總結(jié)是寫(xiě)給人看的,條理不清,人們就看不下去,即使看了也不知其所以然,這樣就達(dá)不到總結(jié)的目的。總結(jié)書(shū)寫(xiě)有哪些要求呢?我們?cè)鯓硬拍軐?xiě)好一篇總結(jié)呢?下面是小編帶來(lái)的優(yōu)秀總結(jié)范文,希望大家能夠喜歡!
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇一
復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道基礎(chǔ)題和一道中檔題,經(jīng)常與三角、解析幾何、方程、不等式等知識(shí)綜合.本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運(yùn)算.方程、方程組,數(shù)形結(jié)合,分域討論,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的體現(xiàn).而復(fù)數(shù)是代數(shù),三角,解析幾何知識(shí),相互轉(zhuǎn)化的樞紐,這對(duì)拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題能力是有益的.數(shù)、式的運(yùn)算和解方程,方程組,不等式是學(xué)好本章必須具有的基本技能.簡(jiǎn)化運(yùn)算的意識(shí)也應(yīng)進(jìn)一步加強(qiáng).
在本章學(xué)習(xí)結(jié)束時(shí),應(yīng)該明確對(duì)二次三項(xiàng)式的因式分解和解一元二次方程與二項(xiàng)方程可以畫(huà)上圓滿的句號(hào)了,對(duì)向量的運(yùn)算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的知識(shí)還有待于進(jìn)一步的研究.
(1)復(fù)數(shù)的向量表示法的運(yùn)算.對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難.對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明.
(2)復(fù)數(shù)三角形式的乘方和開(kāi)方.有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開(kāi)方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練.
(3)復(fù)數(shù)的輻角主值的求法.
(4)利用復(fù)數(shù)的幾何意義靈活地解決問(wèn)題.復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì).
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇二
當(dāng)命題“若a則b”為真時(shí),a稱為b的充分條件,b稱為a的必要條件。
2.轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷。
3.集合法
在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為a、b,則:
若a?b,則p是q的充分條件。
若a?b,則p是q的必要條件。
若a=b,則p是q的充要條件。
若a?b,且b?a,則p是q的既不充分也不必要條件。
1.四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實(shí)際問(wèn)題,理解其關(guān)系(尤其是兩種等價(jià)關(guān)系)的產(chǎn)生過(guò)程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:
(1)交換命題的條件和結(jié)論,所得的新命題就是原來(lái)命題的逆命題;
(2)同時(shí)否定命題的條件和結(jié)論,所得的新命題就是原來(lái)的否命題;
(3)交換命題的條件和結(jié)論,并且同時(shí)否定,所得的新命題就是原命題的逆否命題。
2.由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時(shí),可考慮“正難則反”的.原則,即在正面判斷較難時(shí),可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進(jìn)行判斷。一個(gè)結(jié)論成立的充分條件可以不止一個(gè),必要條件也可以不止一個(gè)。
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇三
第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。針對(duì)數(shù)學(xué)高考強(qiáng)調(diào)對(duì)基礎(chǔ)知識(shí)與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習(xí)高中數(shù)學(xué)的基礎(chǔ)知識(shí),正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬(wàn)變。
對(duì)數(shù)學(xué)思想和方法的考查是對(duì)數(shù)學(xué)知識(shí)在更高層次上的抽象和概括的考查,考查時(shí)與數(shù)學(xué)知識(shí)相結(jié)合。
對(duì)數(shù)學(xué)能力的考查,強(qiáng)調(diào)“以能力立意”,就是以數(shù)學(xué)知識(shí)為載體,從問(wèn)題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點(diǎn)組織材料,側(cè)重體現(xiàn)對(duì)知識(shí)的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,所有數(shù)學(xué)考試最終落在解題上??季V對(duì)數(shù)學(xué)思維能力、運(yùn)算能力、空間想象能力以及實(shí)踐能力和創(chuàng)新意識(shí)都提出了十分明確的考查要求,而解題訓(xùn)練是提高能力的必要途徑,所以高考復(fù)習(xí)必須把解題訓(xùn)練落到實(shí)處。訓(xùn)練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎(chǔ)知識(shí),多進(jìn)行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對(duì)通性通法的認(rèn)識(shí),真正做到解一題,會(huì)一類。
在臨近高考的數(shù)學(xué)復(fù)習(xí)中,考生們更應(yīng)該從三個(gè)層面上整體把握,同步推進(jìn)。
1.知識(shí)層面
也就是對(duì)每個(gè)章節(jié)、每個(gè)知識(shí)點(diǎn)的再認(rèn)識(shí)、再記憶、再應(yīng)用。數(shù)學(xué)高考內(nèi)容選修加必修,可歸納為12個(gè)章節(jié),75個(gè)知識(shí)點(diǎn)細(xì)化為160個(gè)小知識(shí)點(diǎn),而這些知識(shí)點(diǎn)又是縱橫交錯(cuò),互相關(guān)聯(lián),是“你中有我,我中有你”的。考生們?cè)谇謇磉@些知識(shí)點(diǎn)時(shí),首先是點(diǎn)點(diǎn)必記,不可遺漏。再是建立相關(guān)聯(lián)的網(wǎng)絡(luò),做到取自一點(diǎn),連成一線,使之橫豎縱橫都逐個(gè)、逐級(jí)并網(wǎng)連遍,從而牢固記憶、靈活運(yùn)用。
2.能力層面
從知識(shí)點(diǎn)的掌握到解題能力的形成,是綜合,更是飛躍,將知識(shí)點(diǎn)的內(nèi)容轉(zhuǎn)化為高強(qiáng)的數(shù)學(xué)能力,這要通過(guò)大量練習(xí),通過(guò)大腦思維、再思維,從而沉淀而得到數(shù)學(xué)思想的精華,就是數(shù)學(xué)解題能力。我們通常說(shuō)的解題能力、計(jì)算能力、轉(zhuǎn)化問(wèn)題的能力、閱讀理解題意的能力等等,都來(lái)自于千錘百煉的解題之中。
3.創(chuàng)新層面
數(shù)學(xué)解題要?jiǎng)?chuàng)新,首先是思想創(chuàng)新,我們稱之為“函數(shù)的思想”、“討論的方法”。函數(shù)是高中數(shù)學(xué)的主線,我們可以用函數(shù)的思想去分析一切數(shù)學(xué)問(wèn)題,從初等數(shù)學(xué)到高等數(shù)學(xué)、從圖形問(wèn)題到運(yùn)算問(wèn)題、從高散型到連續(xù)型、從指數(shù)與對(duì)數(shù)、從微分與積分等等,這一切都要突出函數(shù)的思想;另外,現(xiàn)在的高考題常常用增加題目中參數(shù)的方法來(lái)提高題目的難度,用于區(qū)別學(xué)生之間解題能力的差異。我們常常應(yīng)對(duì)參數(shù)的策略點(diǎn)是消去參數(shù),化未知為已知;或討論參數(shù),分類找出參數(shù)的含義;或分離參數(shù),將參數(shù)問(wèn)題化成函數(shù)問(wèn)題,使問(wèn)題迎刃而解。這些,我稱之為解題創(chuàng)新之舉。
4.代換層面
還有一類數(shù)學(xué)解題中的創(chuàng)新,是代換,構(gòu)造新函數(shù)新圖形等等,俗稱代換法、構(gòu)造法,這里有更大的思維跨越,在解題的某一階段有時(shí)出現(xiàn)山窮水盡,無(wú)計(jì)可施時(shí),用代換與構(gòu)造,就會(huì)使思路豁然開(kāi)朗、柳暗花明、思路順暢、解答優(yōu)美,體現(xiàn)數(shù)學(xué)之美。常見(jiàn)的代換有變量代換,三角代換,整體代換;常用的構(gòu)造有構(gòu)造函數(shù)、構(gòu)造圖形、構(gòu)造數(shù)列、構(gòu)造不等式、構(gòu)造相關(guān)模型等等。
1.“方程”思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系。初中階段最重要的數(shù)量關(guān)系是平等關(guān)系,其次是不平等關(guān)系。最常見(jiàn)的等價(jià)關(guān)系是“方程”。例如,在等速運(yùn)動(dòng)中,距離、速度和時(shí)間之間存在等價(jià)關(guān)系,可以建立相關(guān)方程:速度時(shí)間=距離。在這樣的方程中,通常會(huì)有已知的量和未知量。含有這種未知量的方程是“方程”,它可以從方程中已知的量導(dǎo)出。未知量的過(guò)程是求解方程的過(guò)程。我們?cè)谛W(xué)時(shí)接觸過(guò)簡(jiǎn)單的方程,而在初中第一年,我們系統(tǒng)地學(xué)習(xí)解一變量的第一個(gè)方程,并總結(jié)出解一變量的第一個(gè)方程的五個(gè)步驟。如果我們學(xué)習(xí)并掌握這五個(gè)步驟,任何一個(gè)等式都能順利地解決。在2年級(jí)和3年級(jí),我們還將學(xué)習(xí)解決二次方程、二次方程和簡(jiǎn)單三角方程。在高中,我們還學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程、參數(shù)方程、極坐標(biāo)方程等。求解這些方程的思想幾乎是相同的。通過(guò)一些方法,將它們轉(zhuǎn)化為一元一階方程或一元二次方程的形式,然后通過(guò)求解一元一階方程或求一元二次方程根公式的常用五步法求解。物理中的能量守恒、化學(xué)中的化學(xué)平衡方程以及大量實(shí)際應(yīng)用都需要建立方程和求解方程才能得到結(jié)果。因此,學(xué)生必須學(xué)會(huì)如何解一維一階方程和一維二階方程,然后才能學(xué)好其他形式的方程。
所謂的“方程”思想是數(shù)學(xué)問(wèn)題,特別是未知現(xiàn)實(shí)見(jiàn)面和已知數(shù)量的復(fù)雜關(guān)系,善于利用“方程”的觀點(diǎn)建立相關(guān)方程,然后利用求解方程的方法來(lái)解決這個(gè)問(wèn)題。
2.“數(shù)與形相結(jié)合”的思想
數(shù)字和形狀在世界各地隨處可見(jiàn)。任何東西,除去它的定性方面,都是留給數(shù)學(xué)研究的,只有形狀和尺寸的屬性。代數(shù)和幾何是初中數(shù)學(xué)的兩個(gè)分支。然而,代數(shù)的研究依賴于“形式”,而幾何學(xué)則依賴于“數(shù)”,而“數(shù)與形的結(jié)合”則是一種趨勢(shì)。我們學(xué)得越多,“數(shù)字”和“形狀”就越不可分割,在高中時(shí),“數(shù)字”和“形狀”是密不可分的。有一門關(guān)于用代數(shù)方法研究幾何問(wèn)題的課程,叫做“分析幾何”。第三年,平面笛卡爾坐標(biāo)系建立后,函數(shù)的研究就離不開(kāi)圖像。通過(guò)圖像的幫助,很容易找到問(wèn)題的關(guān)鍵點(diǎn),解決問(wèn)題。在今后的數(shù)學(xué)學(xué)習(xí)中,應(yīng)重視“數(shù)與形相結(jié)合”的思維訓(xùn)練。只要任何問(wèn)題都與“形狀”有關(guān),就應(yīng)該根據(jù)主題的含義起草一個(gè)草圖來(lái)分析它。這樣做不僅是直觀的,而且是全面的。誠(chéng)信強(qiáng),容易找到切入點(diǎn),對(duì)解決問(wèn)題有很大的益處。品嘗甜味的人會(huì)逐漸養(yǎng)成“數(shù)形結(jié)合”的好習(xí)慣。
1.按部就班
數(shù)學(xué)是環(huán)環(huán)相扣的一門學(xué)科,哪一個(gè)環(huán)節(jié)脫節(jié)都會(huì)影響整個(gè)學(xué)習(xí)的進(jìn)程。所以,平時(shí)學(xué)習(xí)不應(yīng)貪快,要一章一章過(guò)關(guān),不要輕易留下自己不明白或者理解不深刻的問(wèn)題。
2.強(qiáng)調(diào)理解
概念、定理、公式要在理解的基礎(chǔ)上記憶。每新學(xué)一個(gè)定理,嘗試先不看答案,做一次例題,看是否能正確運(yùn)用新定理;若不行,則對(duì)照答案,加深對(duì)定理的理解。
3.基本訓(xùn)練
學(xué)習(xí)數(shù)學(xué)是不能缺少訓(xùn)練的,平時(shí)多做一些難度適中的練習(xí),當(dāng)然莫要陷入死鉆難題的誤區(qū),要熟悉高考的題型,訓(xùn)練要做到有的放矢。
4.重視錯(cuò)誤
訂一個(gè)錯(cuò)題本,專門搜集自己的錯(cuò)題,這些往往就是自己的薄弱之處。復(fù)習(xí)時(shí),這個(gè)錯(cuò)題本也就成了寶貴的復(fù)習(xí)資料。
數(shù)學(xué)的學(xué)習(xí)有一個(gè)循序漸進(jìn)的過(guò)程,妄想一步登天是不現(xiàn)實(shí)的。熟記書(shū)本內(nèi)容后將書(shū)后習(xí)題認(rèn)真寫(xiě)好,有些同學(xué)可能認(rèn)為書(shū)后習(xí)題太簡(jiǎn)單不值得做,這種想法是極不可取的,書(shū)后習(xí)題的作用不僅幫助你將書(shū)本內(nèi)容記牢,還輔助你將書(shū)寫(xiě)格式規(guī)范化,從而使自己的解題結(jié)構(gòu)緊密而又嚴(yán)整,公式定理能夠運(yùn)用的恰如其分,以減少考試中無(wú)謂的失分。
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇四
“不但要會(huì)埋頭拉車,還要會(huì)抬頭看路”是我對(duì)高考數(shù)學(xué)復(fù)習(xí)的一貫見(jiàn)解。高考是一場(chǎng)成王敗寇的殘酷競(jìng)爭(zhēng),它是公平的也是不公平的,說(shuō)高考公平是因?yàn)樗腥硕紝⒚鎸?duì)同樣的時(shí)間、知識(shí)、試卷;說(shuō)高考不公平是因?yàn)閷?duì)每個(gè)人來(lái)說(shuō)信息并不對(duì)稱——對(duì)高考分析透徹的人自然擁有更高的復(fù)習(xí)效率必然會(huì)取得更出色的成績(jī)。
這里我強(qiáng)調(diào)的并不是高中的基礎(chǔ)知識(shí)掌握程度而是復(fù)習(xí)的效率問(wèn)題,誰(shuí)的基礎(chǔ)知識(shí)更牢固誰(shuí)將取得更好的高考成績(jī)這是一個(gè)鐵的事實(shí),但它是建立在“所有人的復(fù)習(xí)效率都是相同的”這個(gè)假設(shè)之下的,所以大家經(jīng)??梢钥吹接行└呖伎忌鷮W(xué)的嘔心瀝血卻永遠(yuǎn)只是中游水平,而另一些高考生擁有大量的休閑活動(dòng)卻仍然能名列前茅。
造成這種現(xiàn)象的原因很多人會(huì)歸結(jié)為“智商”和“運(yùn)氣”,我也不否認(rèn)這兩方面的因素,但最主要的原因還是效率問(wèn)題:兩個(gè)高考生同樣學(xué)了一個(gè)小時(shí)的數(shù)學(xué),一個(gè)人領(lǐng)悟了一個(gè)高考非常容易考到的重點(diǎn)內(nèi)容,而另一個(gè)人啃下了一個(gè)非常難于理解的但是高考從來(lái)沒(méi)有考過(guò)的難點(diǎn)內(nèi)容,那么這樣日積月累下來(lái)第一個(gè)人對(duì)高考真題考點(diǎn)的掌握就會(huì)遠(yuǎn)高于后者。這就是我說(shuō)的“不但要會(huì)埋頭拉車,還要會(huì)抬頭看路”的意思,“拉車”就是指認(rèn)真的復(fù)習(xí),而“看路”則是指認(rèn)清高考考察的重點(diǎn),把握住高考復(fù)習(xí)的方向。“拉車”基本上是每個(gè)高三學(xué)生都能夠作到的,但是“看路”就不盡然了,起早貪黑卻勞而無(wú)功的高考生都是沒(méi)有解決好復(fù)習(xí)方向的問(wèn)題,沒(méi)有看好“路”。
現(xiàn)在這個(gè)階段是高三文科剛開(kāi)始復(fù)習(xí)而理科將近結(jié)課的階段,屬于高考復(fù)習(xí)的初期,這一階段給大家的建議是:
第一:先看一下近三、五年的高考真題,并不要去做這些高考真題,而是要從中分析出那些是真正的高考考點(diǎn),從而為整個(gè)一年的高考復(fù)習(xí)定下一個(gè)正確的基調(diào)。
無(wú)法分清考點(diǎn)的輕重是最常見(jiàn)的問(wèn)題,比如高考中《函數(shù)》與《導(dǎo)數(shù)》兩部分的關(guān)系就是一個(gè)非常容易使人混亂的地方?!逗瘮?shù)》是高一的重點(diǎn)章節(jié),學(xué)校會(huì)反復(fù)強(qiáng)調(diào)它的重要性,說(shuō)它在高考中占多少多少比例等等,而《導(dǎo)數(shù)》則只是高三中的一個(gè)輔助章節(jié)尤其是文科,它的章節(jié)比重很小,學(xué)校強(qiáng)調(diào)的也不夠。這就給大家一個(gè)錯(cuò)覺(jué)就是函數(shù)比導(dǎo)數(shù)重要,但是事實(shí)上在真正的高考中它們兩者的位置恰恰相反,函數(shù)的考查只有3至4道小題而且都位于試卷前幾道題十分簡(jiǎn)單,其它問(wèn)題雖然大量使用函數(shù)思想但是對(duì)同學(xué)們解題沒(méi)有實(shí)質(zhì)上的影響。反觀導(dǎo)數(shù)它在高考中直接占有一道大題特別是07年的文科試題,它取代了《數(shù)列》的地位成為了倒數(shù)第二位的14分難題,同時(shí)只要遇到“函數(shù)單調(diào)性”“極值”“最值”“值域相關(guān)問(wèn)題”“切線問(wèn)題”等都要使用導(dǎo)數(shù)知識(shí)進(jìn)行解決。當(dāng)然函數(shù)的單調(diào)、極值等可以用《函數(shù)》知識(shí)處理但比起導(dǎo)數(shù)來(lái)說(shuō)這是十分煩瑣的。
所以說(shuō)導(dǎo)數(shù)的地位要遠(yuǎn)比函數(shù)來(lái)的重要,這一問(wèn)題往往是影響大家高考復(fù)習(xí)效率的一個(gè)關(guān)鍵問(wèn)題,發(fā)現(xiàn)它并不需要“智商”和“運(yùn)氣”,只要看一遍近幾年高考真題即可,這就是我第一條建議的重點(diǎn)所在。
第二:分析自己的實(shí)力特征,果斷對(duì)知識(shí)點(diǎn)進(jìn)行取舍。高考是選拔性的考試,并不要求我們?cè)谀硞€(gè)單科中考出滿分,只要高考總成績(jī)能夠勝出就可以,所以我們一定要根據(jù)自己的真實(shí)水平對(duì)整個(gè)高考復(fù)習(xí)作一個(gè)規(guī)劃。07年天津市理科狀元的數(shù)學(xué)成績(jī)只有138分,并不是傳奇的150,他其他的高考科目也都是很高但遠(yuǎn)沒(méi)達(dá)到最高,這就說(shuō)明了我們要合理分配自己的精力使自己的能力得以最大的發(fā)揮。這一點(diǎn)就是要告戒大家千萬(wàn)不能偏科,我們身邊經(jīng)常有一些高考考生他們某幾門學(xué)科成績(jī)十分優(yōu)異(高于狀元),但總成績(jī)只能達(dá)到中游或中上的水平,他們最大的問(wèn)題就是時(shí)間分配,如果他們節(jié)省出一部分花在強(qiáng)勢(shì)學(xué)科上的時(shí)間轉(zhuǎn)移到弱勢(shì)學(xué)科上,他們必將取得更好的成績(jī)。
第三:正確對(duì)待模擬考試與模擬題。如果已經(jīng)看過(guò)高考真題的同學(xué)很容易發(fā)現(xiàn)高考真題與模擬題有著天壤之別,大多數(shù)模擬題尤其是出自低級(jí)別地方的,根本無(wú)法達(dá)到高考真題的水平,做它們是無(wú)法真實(shí)反映大家在高考中的表現(xiàn)的。所以大家在現(xiàn)階段應(yīng)該首先看“題”是否值得作再看作的是否好,這才是正確的方法。
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇五
32.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34.你還記得某些特殊角的三角函數(shù)值嗎?
36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為,即.
(3)點(diǎn)的平移公式:點(diǎn)按向量平移到點(diǎn),則.
37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時(shí)易忘比值還等于2r.
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇六
值域
名稱定義
常用的求值域的方法
關(guān)于函數(shù)值域誤區(qū)
定義域、對(duì)應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本“元件”。平時(shí)數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無(wú)可置疑。然而事物均具有二重性,在強(qiáng)化定義域問(wèn)題的同時(shí),往往就削弱或談化了,對(duì)值域問(wèn)題的探究,造成了一手“硬”一手“軟”,使學(xué)生對(duì)函數(shù)的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)?,絕不能厚此薄皮,何況它們二者隨時(shí)處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無(wú)限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來(lái)考慮函數(shù)的取值情況。才能獲得正確答案,從這個(gè)角度來(lái)講,求值域的問(wèn)題有時(shí)比求定義域問(wèn)題難,實(shí)踐證明,如果加強(qiáng)了對(duì)值域求法的研究和討論,有利于對(duì)定義域內(nèi)函的理解,從而深化對(duì)函數(shù)本質(zhì)的認(rèn)識(shí)。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們?cè)趯W(xué)習(xí)中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。“值域”是所有函數(shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而“范圍”則只是滿足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿足這個(gè)條件)。也就是說(shuō):“值域”是一個(gè)“范圍”,而“范圍”卻不一定是“值域”。
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇七
40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒(méi)有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。
41.數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:
在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出.
已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒(méi)有.
在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇八
復(fù)數(shù)是高中代數(shù)的重要內(nèi)容,在高考試題中約占8%-10%,一般的出一道基礎(chǔ)題和一道中檔題,經(jīng)常與三角、解析幾何、方程、不等式等知識(shí)綜合。本章主要內(nèi)容是復(fù)數(shù)的概念,復(fù)數(shù)的代數(shù)、幾何、三角表示方法以及復(fù)數(shù)的運(yùn)算。方程、方程組,數(shù)形結(jié)合,分域討論,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想與方法在本章中有突出的體現(xiàn)。而復(fù)數(shù)是代數(shù),三角,解析幾何知識(shí),相互轉(zhuǎn)化的樞紐,這對(duì)拓寬學(xué)生思路,提高學(xué)生解綜合習(xí)題能力是有益的。數(shù)、式的運(yùn)算和解方程,方程組,不等式是學(xué)好本章必須具有的基本技能。簡(jiǎn)化運(yùn)算的意識(shí)也應(yīng)進(jìn)一步加強(qiáng)。
在本章學(xué)習(xí)結(jié)束時(shí),應(yīng)該明確對(duì)二次三項(xiàng)式的因式分解和解一元二次方程與二項(xiàng)方程可以畫(huà)上圓滿的句號(hào)了,對(duì)向量的運(yùn)算、曲線的復(fù)數(shù)形式的方程、復(fù)數(shù)集中的數(shù)列等邊緣性的知識(shí)還有待于進(jìn)一步的研究。
(1)復(fù)數(shù)的向量表示法的運(yùn)算。對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難。對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明。
(2)復(fù)數(shù)三角形式的乘方和開(kāi)方。有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開(kāi)方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練。
(3)復(fù)數(shù)的輻角主值的求法。
(4)利用復(fù)數(shù)的幾何意義靈活地解決問(wèn)題。復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì)。
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇九
數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書(shū)不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補(bǔ)上。
要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來(lái),以防再犯。爭(zhēng)取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問(wèn)題完整、推理嚴(yán)密。
高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇十
查漏補(bǔ)缺需要我們對(duì)自身的學(xué)習(xí)狀況有一個(gè)清晰的了解,只有優(yōu)先將我們的之前所學(xué)習(xí)的內(nèi)容給填補(bǔ)完成,才能使我們后續(xù)的學(xué)習(xí)不會(huì)因知識(shí)點(diǎn)的缺漏而打亂學(xué)習(xí)進(jìn)度,這就需要我們通過(guò)整理我們的學(xué)習(xí)筆記,梳理課本的知識(shí)點(diǎn)來(lái)進(jìn)行一個(gè)覆蓋式的掃蕩,這樣才能全面無(wú)死角的將所有的知識(shí)點(diǎn)都過(guò)一遍,確認(rèn)自身的知識(shí)體系中沒(méi)有出現(xiàn)盲點(diǎn)就是我們查漏補(bǔ)缺的最終目的。
二、錯(cuò)題本
錯(cuò)題本可以及時(shí)幫助我們將自身還未掌握,卻沒(méi)有意識(shí)到的知識(shí)點(diǎn)盲點(diǎn),并加以及時(shí)的復(fù)習(xí),從而避免了今后出現(xiàn)相似題型時(shí),又因相同原因出現(xiàn)錯(cuò)誤,多多的將我們?nèi)粘W(xué)習(xí)中,做錯(cuò)或不理解題型歸納于我們的錯(cuò)題本中,再根據(jù)不同題型進(jìn)行分類,這樣才能有效的發(fā)現(xiàn)相同題型中,都在哪一方面出現(xiàn)了錯(cuò)誤而導(dǎo)致整個(gè)解題過(guò)程出錯(cuò),整理分析,并加以理解,就是我們有效利用錯(cuò)題本的最好方式。
三、適當(dāng)休息
休息是為了讓我們?cè)谥蟮膶W(xué)習(xí)有更加充足的學(xué)習(xí)精力去進(jìn)行學(xué)習(xí),而我們每天最好是在10點(diǎn)之前就進(jìn)入睡眠狀態(tài),并于第二天的6點(diǎn)起床進(jìn)行學(xué)習(xí),這不僅有效的保持了我們的學(xué)習(xí)精力,還以通過(guò)每天早起來(lái)學(xué)習(xí)更多的知識(shí)點(diǎn),畢竟我們?cè)诘玫匠浞中菹⒅?,就是我們一天中學(xué)習(xí)效率最好的時(shí)刻,而中午1點(diǎn)之后可以進(jìn)行半個(gè)小時(shí)的午休時(shí)間,這樣可以有效的緩解一上午的學(xué)習(xí)疲憊,也避免下午的學(xué)習(xí)狀態(tài)受損。每當(dāng)學(xué)習(xí)一到連個(gè)小時(shí),就需要進(jìn)行一小段5-10分鐘的中場(chǎng)休息,既是舒緩我們的大腦,也是為了讓我們復(fù)習(xí)之前所學(xué)習(xí)的內(nèi)容。
【本文地址:http://www.aiweibaby.com/zuowen/5554073.html】