教案是教師備課的重要組成部分,它是教學計劃的具體體現(xiàn)。在教案中適當運用多媒體教學手段,提高學生的學習興趣和參與度。通過閱讀教案范文,教師可以了解教學活動的設計原理和實施過程。
中職高一數學教案篇一
三維目標的具體內容和層次劃分
請闡述數學課堂教學三維目標的具體內容和層次劃分
所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。
知識與技能:既是課堂教學的出發(fā)點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學合理的內核,是我國傳統(tǒng)教育教學的優(yōu)勢,應該從傳統(tǒng)教學中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強調雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統(tǒng)?!斑^程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎上對教學目標的進一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學生體驗到科學發(fā)展的過程,我們更多地要讓學生掌握過程,不一定要統(tǒng)一的結果。
情感、態(tài)度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統(tǒng)?!扒楦?、態(tài)度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標基礎上對教學目標深層次的開拓,只有學生充分的認識到他們肩負的責任,就能夠激發(fā)起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。
三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
中職高一數學教案篇二
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。 難點:柱、錐、臺、球的結構特征的概括。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀 四、教學思路
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3、組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?
6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8、引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習題1.1 a組第1題。
5、棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
由學生整理學習了哪些內容 六、布置作業(yè)
課本p8 練習題1.1 b組第1題
課外練習 課本p8 習題1.1 b組第2題
中職高一數學教案篇三
《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。-----《實習作業(yè)》。本節(jié)課程體現(xiàn)數學文化的特色,學生通過了解函數的發(fā)展歷史進一步感受數學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數的概念有更深刻的理解;感受新的學習方式帶給他們的學習數學的樂趣。
該內容在《普通高中課程標準實驗教科書·數學(1)》(人教a版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經驗,所以需要教師精心設計,做好準備工作,充分體現(xiàn)教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數學文化的熏陶。
《標準》強調數學文化的重要作用,體現(xiàn)數學的文化的價值。數學教育不僅應該幫助學生學習和掌握數學知識和技能,還應該有助于學生了解數學的價值。讓學生逐步了解數學的思想方法、理性精神,體會數學家的創(chuàng)新精神,以及數學文明的深刻內涵。
2.體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
3.在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。
重點:了解函數在數學中的核心地位,以及在生活里的廣泛應用;
難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
【課堂準備】。
1.分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協(xié)調工作,確保每位學生都參加。
2.選題:根據個人興趣初步確定實習作業(yè)的題目。教師應該到各組中去了解選題情況,盡量多地選擇不同的題目。
3.分配任務:根據個人情況和優(yōu)勢,經小組共同商議,由組長確定每人的具體任務。
4.搜集資料:針對所選題目,通過各種方式(相關書籍----《函數在你身邊》、《世界函數通史》、《世界著名科學家傳記》等;搜集素材,包括文字、圖片、數據以及音像資料等,并記錄相關資料,寫出實習報告。
6.把各組的實習報告,貼在班級的學習欄內,讓學生學習交流。
【教學過程】。
1.出示課題:交流、分享實習報告。
2.交流、分享:(由數學科代表主持。小組推薦中心發(fā)言人;以下記錄均為發(fā)言概述)。
(1)學生1:函數小史。
數學史表明,重要的數學概念的產生和發(fā)展,對數學發(fā)展起著不可估量的作用。有些重要的數學概念對數學分支的產生起著奠定性的作用。我們剛學過的函數就是這樣的重要概念。在笛卡爾引入變量以后,變量和函數等概念日益滲透到科學技術的各個領域。最早提出函數(function)概念的,是17世紀德國數學家萊布尼茨。最初萊布尼茨用“函數”一詞表示冪。1755年,瑞士數學家歐拉把給出了不同的函數定義。中文數學書上使用的“函數”一詞是轉譯詞。是我國清代數學家李善蘭在翻譯《代數學》(1895年)一書時,把“function”譯成“函數”的。我們可以預計到,關于函數的爭論、研究、發(fā)展、拓廣將不會完結,也正是這些影響著數學及其相鄰學科的發(fā)展。
(2)教師帶頭鼓掌并簡單評價。
(3)學生2:函數概念的縱向發(fā)展:
變革,形成了函數的現(xiàn)代定義形式。
(4)教師帶頭鼓掌并簡單評價。
(5)學生3:我國數學家李國平與函數。
學生3描述了數學家中國科學院數學物理學部委員.李國平(1910—1996),的身世和他的成長歷程。李國平1933年畢業(yè)于中山大學數學天文系。后歷任中國科學院數學計算技術研究所所長,中國科學院武漢數學物理研究所所長,中國數學會理事,中國科學院學部委員等職務。學生還通俗地講述了李國平先生在微分方程復變函數論領域的卓越貢獻。
(6)教師帶頭鼓掌并簡單評價。
(7)學生4:函數概念對數學發(fā)展的影響。
(8)教師帶頭鼓掌并簡單評價。
(9)學生5:函數概念的歷史演變過程。
上述函數概念的歷史演變過程,就是一系列弱抽象的過程.學生展示了下表:早期函數概念。
代數函數。
函數是這樣一個量,它是通過其它一些量的代數運算得到的。
近代函數概念。
映射函數。
18世紀函數概念。
解析函數。
函數是指由一個變量與一些常量通過任何方式形成的解析表達式。
19世紀函數概念。
變量函數。
對于給定區(qū)間上的每一個x值,y總有唯一確定的值與之對應,則稱y是x的函數.。
(10)教師帶頭鼓掌并簡單評價。
3.課堂小結:
4.實習作業(yè)的評定:
中職高一數學教案篇四
1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系
2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想
3、了解集合元素個數問題的討論說明
通過提問匯總練習提煉的形式來發(fā)掘學生學習方法
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維
[教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀
[教學方法]:講練結合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數分為:有限集和無窮集兩類
中職高一數學教案篇五
:
設計.突出重點.培養(yǎng)能力.
三、課堂練習
教材第13頁練習1、2、3、4.
【助練習】第13頁練習4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.
四、小結
提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.
五、作業(yè)
習題1至8.
筆練結合板書.
傾聽.修改練習.掌握方法.
觀察.思考.傾聽.理解.記憶.
傾聽.理解.記憶.
回憶、再現(xiàn)內容.
落實
介紹解題技能技巧.
內容條理化.
課堂教學設計說明
2.反演律可根據學生實際酌情使用.
中職高一數學教案篇六
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
一、知識歸納
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構造三角形
四)測量角度問題
例4、在一個特定時段內,以點e為中心的7海里以內海域被設為警戒水域.點e正北55海里處有一個雷達觀測站a.某時刻測得一艘勻速直線行駛的船只位于點a北偏東。
中職高一數學教案篇七
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!
教學目標。
1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的。
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式。
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項。
2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學生嚴謹的科學態(tài)度及良好的思維習慣。
教學建議。
(1)為激發(fā)學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等。
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發(fā)現(xiàn)數列與函數的關系。在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列。函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法。
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據前幾項的規(guī)律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。
(5)對每個數列都有求和問題,所以在本節(jié)課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數知識是可以解決的。
上述提供的高一數學教案:數列希望能夠符合大家的實際需要!
中職高一數學教案篇八
一、準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題
概念抽象、符號術語多是集合單元的一個顯著特點,例如交集、并集、補集的概念及其表示方法,集合與元素的關系及其表示方法,集合與集合的關系及其表示方法,子集、真子集和集合相等的定義等等。這些概念、關系和表示方法,都可以作為求解集合問題的依據、出發(fā)點甚至是突破口。因此,要想學好集合的內容,就必須在準確地把握集合的概念,熟練地運用集合與集合的關系解決具體問題上下功夫。
二、注意弄清集合元素的性質,學會運用元素分析法審視集合的有關問題
眾所周知,集合可以看成是一些對象的全體,其中的每一個對象叫做這個集合的元素。集合中的元素具有“三性”:
(1)、確定性:集合中的元素應該是確定的,不能模棱兩可。
(2)、互異性:集合中的元素應該是互不相同的,相同的元素在集合中只能算作一個。
(3)、無序性:集合中的元素是無次序關系的。
集合的關系、集合的運算等等都是從元素的角度予以定義的。因此,求解集合問題時,抓住元素的特征進行分析,就相當于牽牛抓住了牛鼻子。
三、體會集合問題中蘊含的數學思想方法,掌握解決集合問題的基本規(guī)律
布魯納說過,掌握數學思想可使得數學更容易理解和記憶,領會數學思想是通向遷移大道的“光明之路”。集合單元中,含有豐富的數學思想內容,例如數形結合的思想、分類討論的思想、等價轉化的思想、正難則反的思想等等,顯得十分活躍。在學習過程中,注意對這些數學思想進行挖掘、提煉和滲透,不僅可以有效地掌握集合的知識,駕馭集合問題的求解,而且對于開發(fā)智力、培養(yǎng)能力、優(yōu)化思維品質,都具有十分重要的意義。
四、重視空集的特殊性,防止由于忽視空集這一特殊情況導致的解題失誤
空集是一個十分重要的特殊集合,它具備“空集雖空,但空有所為”的功能。在解題的過程中,要時刻注意有無可能存在空集的情況,否則極易導致解題失誤。這一點,必須引起我們的高度重視。
高一數學習數學的技巧
一、轉變觀念,化被動學習為主動學習
初中階段,特別是初中三年級,老師會通過大量的練習,學生自己也會查找很多資料,這樣就會把自己的數學成績得到明顯的提高,這樣的學習方式是一種被動式的學習也叫題海戰(zhàn)術,學生只是簡單的接受數學知識,并且初中數學的知識相對比較淺顯,學生很快就能掌握知識。可是到了高中以后通過題海戰(zhàn)術是能提高一些對數學知識的掌握,可是對于這個知識中的為什么就不能說出其所以然,就不能對相關的知識進行創(chuàng)新。所以高中數學的學習不只是單純的做題就可以掌握其知識,而是要弄得其所以然才行,這樣就需要學生自己去主動發(fā)掘知識的內涵,在老師的指導下把數學知識進行擴展,達到觸類旁通。要做到這樣就需要學生本身更加主動的學習,這樣才能更加的發(fā)現(xiàn)數學中的樂趣。
二、學會聽課,盡可能掌握更多的知識
數學的學習是需要老師的引導,在引導下,學生根據自己的情況做一些相應的練習來掌握知識,鞏固知識,要想提高學習效率,就需要學生做到以下一些:
1、做好預習,提出問題,進行多次閱讀課本,查閱相關資料,回答自己提出的問題,力爭在老師講新課前盡可能的掌握更多的知識,如果不能回答的問題可以在老師講課中去解決。
2、學會聽課,在初中的教學中老師經常會把一個知識點進行多次的講解和通過大量的練習讓學生去掌握,可是到高中以后,老師對于一個知識點就不會再通過大量的練習來讓學生去掌握,而是通過一些相關知識的講解去引導學生明白這個知識是怎么來的,又如何用這個知識解答一些相關的疑惑,如果學生能明白的話就能在自己的知識下通過課后的練習去鞏固這些知識,同時學生也可以根據老師的引導去擴展知識。
當然,對于自己在聽課過程中一下子不能明白的知識,可以通過舉手讓老師再進行一次分析講解,也同時做好相關的記錄,以備在課后去進一步弄明白;對于自己在預習中提出的問題,如果老師沒有解決的話,可以利用課余時間請教老師解答,這樣學習就可能學習到更多的知識。
3、敢于發(fā)表自己的想法,在高中數學學習中,學生會遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那么就需要學生敢于發(fā)表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發(fā)同學學習的興趣,如果一節(jié)課都是老師講的話,課堂氣氛也是很悶的,學生學習的效率也是很低的。
4、聽好每一分鐘,尤其是老師講課的開頭和結束
老師講課開頭,一般是概括前節(jié)課的要點指出本節(jié)課要講的內容,是把舊知識和新知識聯(lián)系起來的環(huán)節(jié),結尾常常是對一節(jié)課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節(jié)知識方法的綱要。
三、課后鞏固
很多學生在學習過程中沒有重視課后的鞏固,只是覺得在課堂上掌握一些知識就夠了,其實這是錯誤的。高中數學的知識很多,并且不像初中數學那么淺顯,而是有很多的內涵,如果不能進一步挖掘其內涵,那么只是掌握這個知識的表面,于是在自己做練習時就不知道如何去解了,也不能運用這個知識的。
做練習是需要的,可是有些學生只是為了練習去做練習,而不是為了鞏固這個知識,擴展這個知識去做練習,經常是做完這個練習后算做完了,這樣跟初中的做題是沒有區(qū)別的。其實,我們還應該把這個練習中使用到的知識串起來,這樣我們就能明白那些知識在運用,也能掌握更多的知識。也同樣能發(fā)現(xiàn)那個知識點是重點,也能發(fā)現(xiàn)難題是如何把相關知識串起來的。
四、學會看題、學會選做題
高中的相關資料比初中更多,高考是全社會都關注的問題,所以高中的練習也特別多,有些學生買的資料也多,于是如何利用題目來掌握我們學習的知識,擴展我們學習的知識就成為學習的關鍵。我覺得題目要多看,多想,看資料中的解題方法,想方法中的為什么,這樣就可以借鑒更多的方法。方法多了,可以也要消化。于是我們要會有選擇的做題,達到事半功倍。我建議每天一小練,每周做一套完整的考題,看2~3套考題,從中去發(fā)現(xiàn)那些是這段時間數學學習的重點知識,那些是我們常用的解題方法以及使用什么方法能優(yōu)化解題。
五、重視每一次測試,認真分析考試中丟分的原因,并對丟分的地方做出相關的措施。
數學的學習技巧有很多,每一個人都有自己的不同技巧,我自己根據自己讀書時期的一些體會和現(xiàn)在教學過程中的體會,歸納出幾點技巧與大家共勉。
高一理數數學記筆記的方法
一記內容提綱
老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。
二記疑難問題
將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。
三記思路方法
對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。
四記歸納總結
注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。
五記體會感受
數學學習是智、情、意、行的綜合。數學學習過程伴隨著積極的情感體驗、意志體驗過程,記下自己學習過程的感受,可以用來更好地調控自己的學習行為。譬如,一道運算很繁雜的習題,依靠堅強的意志獲得解題成功后,可在旁邊寫上“功夫不負有心人”等自勉的語句,用來激勵自己。
六記錯誤反思
學習過程中不可避免地會犯這樣或那樣的錯誤,“聰明人不犯或少犯相同的錯誤”,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
中職高一數學教案篇九
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:觀察、動手實踐、討論、類比。
四、教學過程。
(一)創(chuàng)設情景,揭開課題。
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課。
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習。
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理。
請學生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)布置作業(yè)。
課本p20習題1.2[a組]1。
中職高一數學教案篇十
掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
向量的性質及相關知識的綜合應用。
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
四、小結:
1、進一步熟練有關向量的運算和證明;能運用解三角形的`知識解決有關應用問題,
2、滲透數學建模的思想,切實培養(yǎng)分析和解決問題的能力。
中職高一數學教案篇十一
拿到試卷后可以先快速瀏覽一下所有題目,根據積累的考試經驗,大致估計一下每部分應該分配的時間。對于能夠很快做出來的.題目,一定要拿到應得的分數。
二、確定每部分的答題時間。
1、考試時占用了很多時間卻一點也沒有做出來的題目。對于這類題目,你以后考試時就應該盡量減少時間,或者放棄,等以后學習進階了再嘗試著做。
2、考試時花了過多的時間才做出來的題目。對于這類題目,你以后平時做題時要盡量加快速度,或者通過“反復訓練”等提高反應速度,這樣,你下次考試時能用較少的時間做出來。
三、碰到難題時。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識點和解題技巧。
4、對于花了一定時間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標點、符號、解題步驟等小的地方盡量做好,不要丟掉應得的每一分。
中職高一數學教案篇十二
復習要求】熟悉與數列知識相關的背景,如增長率、存款利息等問題,提高學生閱讀理解能力、抽象轉化的能力以及解答實際問題的能力,強化應用儀式。
方法規(guī)律】應用數列知識界實際應用問題的關鍵是通過對實際問題的綜合分析,確定其數學模型是等差數列,還是等比數列,并確定其首項,公差或公比等基本元素,然后設計合理的計算方案,即數學建模是解答數列應用題的關鍵。
一、基礎訓練。
a、511b、512c、1023d、1024。
2、若一工廠的生產總值的月平均增長率為p,則年平均增長率為。
a、b、
c、d、
二、典型例題。
例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數最多?并求這一天的新患者人數。
中職高一數學教案篇十三
1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系。
2、了解集合的運算包含了集合表示法之間的轉化及數學解題的`一般思想。
3、了解集合元素個數問題的討論說明。
通過提問匯總練習提煉的形式來發(fā)掘學生學習方法。
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維。
[教學重點、難點]:會正確應用其概念和性質做題[教具]:多媒體、實物投影儀。
[教學方法]:講練結合法。
[授課類型]:復習課。
[課時安排]:1課時。
[教學過程]:集合部分匯總。
本單元主要介紹了以下三個問題:
1,集合的含義與特征。
2,集合的表示與轉化。
3,集合的基本運算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對象的全體,稱一個集合。
2,集合按元素的個數分為:有限集和無窮集兩類。
中職高一數學教案篇十四
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質。
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
中職高一數學教案篇十五
2、掌握標準方程中的幾何意義。
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題。
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
中職高一數學教案篇十六
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數列,希望對您有所幫助!
1.使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項.
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的.
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式.
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項.
2.通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學生嚴謹的科學態(tài)度及良好的思維習慣.
(1)為激發(fā)學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的.計算等.
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發(fā)現(xiàn)數列與函數的關系.在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列.函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法.由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法.
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調整等.如果學生一時不能寫出通項公式,可讓學生依據前幾項的規(guī)律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系.
(5)對每個數列都有求和問題,所以在本節(jié)課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數知識是可以解決的.
上述提供的:數列希望能夠符合大家的實際需要!
中職高一數學教案篇十七
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1)全體自然數0,1,2,3,4,5,
2)代數式.
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學生
5)本校實驗室的所有天平
6)本班級全體高個子同學
7)著名的科學家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________
三、集合中元素的'三個性質:
四、元素與集合的關系:1)____________2)____________
五、特殊數集專用記號:
4)有理數集______5)實數集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;
2)函數的全體值的集合;
3)函數的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數組成的集合;
8)所有正偶數組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設,,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結:
作業(yè)班級姓名學號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5.設集合a=,b=,
c=,d=,e=。
其中有限集的個數是____________.
6.設,則集合中所有元素的和為
7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數a的值。
【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
【本文地址:http://aiweibaby.com/zuowen/8339110.html】