高中數(shù)學(xué)不等式教案(專業(yè)19篇)

格式:DOC 上傳日期:2023-11-09 21:59:04
高中數(shù)學(xué)不等式教案(專業(yè)19篇)
時(shí)間:2023-11-09 21:59:04     小編:JQ文豪

編寫教案需要充分考慮學(xué)生的學(xué)習(xí)特點(diǎn)和教學(xué)環(huán)境的實(shí)際情況。教案的編寫要充分考慮學(xué)生的前提知識(shí)和學(xué)習(xí)能力,以便制定相應(yīng)的教學(xué)策略。在這里我們?yōu)榇蠹姨峁┝硕鄠€(gè)教案示例,供大家學(xué)習(xí)和參考。

高中數(shù)學(xué)不等式教案篇一

知識(shí)與技能。

在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的.圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。

過(guò)程與方法。

通過(guò)對(duì)方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力得到提高。

情感態(tài)度與價(jià)值觀。

滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

重點(diǎn)。

掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。

難點(diǎn)。

二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

(一)復(fù)習(xí)舊知,引出課題。

1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

2、提問(wèn)1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)不等式教案篇二

(3)能夠利用基本不等式求簡(jiǎn)單的最值。

2、過(guò)程與方法目標(biāo)。

(1)經(jīng)歷由幾何圖形抽象出基本不等式的過(guò)程;。

(2)體驗(yàn)數(shù)形結(jié)合思想。

3、情感、態(tài)度和價(jià)值觀目標(biāo)。

(1)感悟數(shù)學(xué)的發(fā)展過(guò)程,學(xué)會(huì)用數(shù)學(xué)的眼光觀察、分析事物;。

(2)體會(huì)多角度探索、解決問(wèn)題。

高中數(shù)學(xué)不等式教案篇三

了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。

【自學(xué)質(zhì)疑】

漸近線方程是 ,離心率 ,若點(diǎn) 是雙曲線上的點(diǎn),則 , 。

2.又曲線 的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是

3.經(jīng)過(guò)兩點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程是 。

4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。

5.與雙曲線 有公共的漸近線,且經(jīng)過(guò)點(diǎn) 的雙曲線的方程為

【例題精講】

1.雙曲線的離心率等于 ,且與橢圓 有公共焦點(diǎn),求該雙曲線的方程。

2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn) 是橢圓上任意一點(diǎn),當(dāng)直線 的斜率都存在,并記為 時(shí),那么 之積是與點(diǎn) 位置無(wú)關(guān)的定值,試對(duì)雙曲線 寫出具有類似特性的性質(zhì),并加以證明。

3.設(shè)雙曲線 的半焦距為 ,直線 過(guò) 兩點(diǎn),已知原點(diǎn)到直線 的距離為 ,求雙曲線的離心率。

【矯正鞏固】

1.雙曲線 上一點(diǎn) 到一個(gè)焦點(diǎn)的距離為 ,則它到另一個(gè)焦點(diǎn)的距離為 。

2.與雙曲線 有共同的漸近線,且經(jīng)過(guò)點(diǎn) 的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是 。

3.若雙曲線 上一點(diǎn) 到它的右焦點(diǎn)的距離是 ,則點(diǎn) 到 軸的距離是

4.過(guò)雙曲線 的左焦點(diǎn) 的直線交雙曲線于 兩點(diǎn),若 。則這樣的直線一共有 條。

【遷移應(yīng)用】

2. 已知雙曲線 的焦點(diǎn)為 ,點(diǎn) 在雙曲線上,且 ,則點(diǎn) 到 軸的距離為 。

3. 雙曲線 的焦距為

4. 已知雙曲線 的一個(gè)頂點(diǎn)到它的一條漸近線的距離為 ,則

5. 設(shè) 是等腰三角形, ,則以 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線的離心率為 .

高中數(shù)學(xué)不等式教案篇四

了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。

漸近線方程是,離心率,若點(diǎn)是雙曲線上的點(diǎn),則,。

2、又曲線的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是

3、經(jīng)過(guò)兩點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程是。

4、雙曲線的漸近線方程是,則該雙曲線的離心率等于。

5、與雙曲線有公共的漸近線,且經(jīng)過(guò)點(diǎn)的雙曲線的方程為

1、雙曲線的離心率等于,且與橢圓有公共焦點(diǎn),求該雙曲線的方程。

2、已知橢圓具有性質(zhì):若是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),當(dāng)直線的斜率都存在,并記為時(shí),那么之積是與點(diǎn)位置無(wú)關(guān)的定值,試對(duì)雙曲線寫出具有類似特性的性質(zhì),并加以證明。

3、設(shè)雙曲線的半焦距為,直線過(guò)兩點(diǎn),已知原點(diǎn)到直線的距離為,求雙曲線的離心率。

1、雙曲線上一點(diǎn)到一個(gè)焦點(diǎn)的距離為,則它到另一個(gè)焦點(diǎn)的距離為。

2、與雙曲線有共同的漸近線,且經(jīng)過(guò)點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是。

3、若雙曲線上一點(diǎn)到它的右焦點(diǎn)的距離是,則點(diǎn)到軸的距離是

4、過(guò)雙曲線的左焦點(diǎn)的直線交雙曲線于兩點(diǎn),若。則這樣的'直線一共有條。

1、已知雙曲線的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率

2、已知雙曲線的焦點(diǎn)為,點(diǎn)在雙曲線上,且,則點(diǎn)到軸的距離為。

3、雙曲線的焦距為

4、已知雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離為,則

5、設(shè)是等腰三角形,,則以為焦點(diǎn)且過(guò)點(diǎn)的雙曲線的離心率為。

高中數(shù)學(xué)不等式教案篇五

三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。

通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。

借助單位圓探究誘導(dǎo)公式。

能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。

誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。

誘導(dǎo)公式的應(yīng)用。

多媒體。

1. 誘導(dǎo)公式(一)(二)。

2. 角 (終邊在一條直線上)

3. 思考:下列一組角有什么特征?( )能否用式子來(lái)表示?

已知 由

可知

而 (課件演示,學(xué)生發(fā)現(xiàn))

所以

于是可得: (三)

設(shè)計(jì)意圖:結(jié)合幾何畫板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。

由公式(一)(三)可以看出,角 角 相等。即:

.

公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡(jiǎn)三角函數(shù)式。

設(shè)計(jì)意圖:結(jié)合學(xué)過(guò)的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。

1. 練習(xí)

(1)

設(shè)計(jì)意圖:利用公式解決問(wèn)題,發(fā)現(xiàn)新問(wèn)題,小組研究討論,得到新公式。

(學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)

例3:求下列各三角函數(shù)值:

(1)

(2)

(3)

(4)

設(shè)計(jì)意圖:利用公式解決問(wèn)題。

練習(xí):

(1)

(2) (學(xué)生板演,師生點(diǎn)評(píng))

設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問(wèn)題。

四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問(wèn)題、解決問(wèn)題的能力,熟練應(yīng)用解決問(wèn)題。

很榮幸大家來(lái)聽(tīng)我的課,通過(guò)這課,我學(xué)習(xí)到如下的東西:

1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位

2.注意板書設(shè)計(jì),注重細(xì)節(jié)的東西,語(yǔ)速需要改正

3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁(yè)制作,讓你的網(wǎng)頁(yè)更加的完善,學(xué)生更容易操作

5.上課的生動(dòng)化,形象化需要加強(qiáng)

1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開(kāi)設(shè)校際課,勇氣可嘉!建議:感覺(jué)到老師有點(diǎn)緊張,其實(shí)可以放開(kāi)點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁(yè)上公開(kāi)的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來(lái)思考。

2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語(yǔ)調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。

3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來(lái),并形成自我的經(jīng)驗(yàn)。

4.評(píng)議者:引導(dǎo)學(xué)生通過(guò)網(wǎng)絡(luò)進(jìn)行探究。

建議:課件制作在線測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問(wèn)學(xué)生。

( 1)給學(xué)生思考的時(shí)間較長(zhǎng),語(yǔ)調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語(yǔ)言更好

( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考

( 4)給學(xué)生答案,這個(gè)網(wǎng)頁(yè)要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來(lái)

( 5)1.板書設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語(yǔ)速相對(duì)是比較快的3.練習(xí)量比較少

( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧

( 7)注意引入的過(guò)程要帶有目的,帶著問(wèn)題來(lái)教學(xué),學(xué)生帶著問(wèn)題來(lái)學(xué)習(xí)

( 8)教學(xué)模式相對(duì)簡(jiǎn)單重復(fù)

( 9)思路較為清晰,規(guī)范化的推理

高中數(shù)學(xué)不等式教案篇六

掌握求解一元二次不等式的簡(jiǎn)單方法,能正確求解一元二次不等式的解集。

【過(guò)程與方法】。

在探究一元二次不等式的解法的過(guò)程中,提升邏輯推理能力。

【情感、態(tài)度與價(jià)值觀】。

感受數(shù)學(xué)知識(shí)的前后聯(lián)系,提升學(xué)習(xí)數(shù)學(xué)的熱情。

(一)導(dǎo)入新課。

回顧一元二次不等式的一般形式,組織學(xué)生舉例一些簡(jiǎn)單的一元二次不等式。

提問(wèn):如何求解?引出課題。

(二)講解新知。

結(jié)合課前回顧的一元二次不等式的一般形式,對(duì)比之前所學(xué)內(nèi)容,引導(dǎo)學(xué)生發(fā)現(xiàn)其與一元二次方程和二次函數(shù)的共同特點(diǎn)。

高中數(shù)學(xué)不等式教案篇七

集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。

教學(xué)重點(diǎn).難點(diǎn)

重點(diǎn):集合的含義與表示方法.

難點(diǎn):表示法的恰當(dāng)選擇.

教學(xué)目標(biāo)

l.知識(shí)與技能

(1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;

(2)知道常用數(shù)集及其專用記號(hào); (3)了解集合中元素的確定性.互異性.無(wú)序性;

(4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;

2.過(guò)程與方法

(1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義.

(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí).

3.情感.態(tài)度與價(jià)值觀

使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.

1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué).

(一)創(chuàng)設(shè)情景,揭示課題

1.教師首先提出問(wèn)題:(1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。

(2)問(wèn)題:像“家庭”、“學(xué)?!?、“班級(jí)”等,有什么共同特征?

引導(dǎo)學(xué)生互相交流.與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià).

2.活動(dòng):(1)列舉生活中的集合的例子;(2)分析、概括各實(shí)例的共同特征

由此引出這節(jié)要學(xué)的內(nèi)容。

設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

(二)研探新知,建構(gòu)概念

1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:

(1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國(guó)古代的四大發(fā)明;

(3)所有的安理會(huì)常任理事國(guó); (4)所有的正方形;

(5)海南省在20xx年9月之前建成的所有立交橋;

(6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);

(7)國(guó)興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.

2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?

3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義.一般地,指定的某些對(duì)象的全體稱為集合(簡(jiǎn)稱為集).集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素.

4.教師指出:集合常用大寫字母a,b,c,d,?表示,元素常用小寫字母a,b,c,d?表示.

設(shè)計(jì)意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神

(三)質(zhì)疑答辯,發(fā)展思維

1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無(wú)序性.只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等.

2.教師組織引導(dǎo)學(xué)生思考以下問(wèn)題:

判斷以下元素的全體是否組成集合,并說(shuō)明理由:

(1)大于3小于11的偶數(shù);(2)我國(guó)的小河流.讓學(xué)生充分發(fā)表自己的建解.

3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由.教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià).

4.教師提出問(wèn)題,讓學(xué)生思考

高一(4)班的一位同學(xué),那么a,b與集合a分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.

如果a是集合a的元素,就說(shuō)a屬于集合a,記作a?a.

如果a不是集合a的元素,就說(shuō)a不屬于集合a,記作a?a.

(2)如果用a表示“所有的安理會(huì)常任理事國(guó)”組成的集合,則中國(guó).日本與集合a的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示.

(3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題.

5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過(guò)程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號(hào).并讓學(xué)生完成習(xí)題1.1a組第1題.

6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問(wèn)題:

(1)要表示一個(gè)集合共有幾種方式?

(2)試比較自然語(yǔ)言.列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對(duì)象是什么?

(3)如何根據(jù)問(wèn)題選擇適當(dāng)?shù)募媳硎痉?

使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。

設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。

(四)鞏固深化,反饋矯正

教師投影學(xué)習(xí):

(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題.

設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象

(五)歸納小結(jié),布置作業(yè)

小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問(wèn)題:

1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容? 2.你認(rèn)為學(xué)習(xí)集合有什么意義?

3.選擇集合的表示法時(shí)應(yīng)注意些什么?

設(shè)計(jì)意圖:通過(guò)回顧,對(duì)概念的發(fā)生與發(fā)展過(guò)程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。

作業(yè):1.課后書面作業(yè):第13頁(yè)習(xí)題1.1a組第4題.

2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種

呢?如何表示?請(qǐng)同學(xué)們通過(guò)預(yù)習(xí)教材.

高中數(shù)學(xué)不等式教案篇八

掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。

(一)主要知識(shí):

1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的`有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

(二)例題分析:略。

1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問(wèn)題,

2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。

高中數(shù)學(xué)不等式教案篇九

1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識(shí)。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問(wèn)題能力和數(shù)學(xué)思維能力。

本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。

1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。

(一)本大綱教學(xué)要求用語(yǔ)的表述1.認(rèn)知要求(分為三個(gè)層次)

了解:初步知道知識(shí)的含義及其簡(jiǎn)單應(yīng)用。

理解:懂得知識(shí)的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識(shí)的聯(lián)系。掌握:能夠應(yīng)用知識(shí)的概念、定義、定理、法則去解決一些問(wèn)題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)

計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對(duì)數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢(shì),數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。

空間想象能力:依據(jù)文字、語(yǔ)言描述,或較簡(jiǎn)單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。

分析與解決問(wèn)題能力:能對(duì)工作和生活中的簡(jiǎn)單數(shù)學(xué)相關(guān)問(wèn)題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。

數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識(shí),運(yùn)用類比、歸納、綜合等方法,對(duì)數(shù)學(xué)及其應(yīng)用問(wèn)題能進(jìn)行有條理的思考、判斷、推理和求解;針對(duì)不同的問(wèn)題(或需求),會(huì)選擇合適的模型(模式)。

(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))

第2單元不等式(8學(xué)時(shí))

第3單元函數(shù)(12學(xué)時(shí))

第4單元指數(shù)函數(shù)與對(duì)數(shù)函數(shù)(12學(xué)時(shí))

第5單元三角函數(shù)(18學(xué)時(shí))

第6單元數(shù)列(10學(xué)時(shí))

第7單元平面向量(矢量)(10學(xué)時(shí))

第8單元直線和圓的方程(18學(xué)時(shí))

第9單元立體幾何(14學(xué)時(shí))

第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))

2.職業(yè)模塊

第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))

第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))

第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))

高中數(shù)學(xué)不等式教案篇十

熟悉兩角和與差的正、余公式的推導(dǎo)過(guò)程,提高邏輯推理能力。

掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問(wèn)題。

教學(xué)重難點(diǎn)。

熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。

兩角差的余弦公式。

用-b代替b看看有什么結(jié)果?

高中數(shù)學(xué)不等式教案篇十一

1.符號(hào):

不等式兩邊都乘以或除以一個(gè)負(fù)數(shù),要改變不等號(hào)的方向。

2.確定解集:

比兩個(gè)值都大,就比大的還大;

比兩個(gè)值都小,就比小的還小;

比大的大,比小的小,無(wú)解;

比小的大,比大的小,有解在中間。

三個(gè)或三個(gè)以上不等式組成的`不等式組,可以類推。

3.另外,也可以在數(shù)軸上確定解集:

把每個(gè)不等式的解集在數(shù)軸上表示出來(lái),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集。有幾個(gè)就要幾個(gè)。帶=號(hào)的,數(shù)軸上的點(diǎn)是實(shí)心的,反之,就是空心的。

高中數(shù)學(xué)不等式教案篇十二

(3)通過(guò)用數(shù)軸來(lái)表示含絕對(duì)值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;。

教學(xué)過(guò)程設(shè)計(jì)。

教師活動(dòng)。

學(xué)生活動(dòng)。

設(shè)計(jì)意圖。

一、導(dǎo)入新課。

提問(wèn)正數(shù)的絕對(duì)值什么?負(fù)數(shù)的絕對(duì)值是什么?零的絕對(duì)值是什么?舉例說(shuō)明?

概括。

口答。

絕對(duì)值的概念是解與()型絕對(duì)值不等值的概念,為解這種類型的絕對(duì)值不等式做好鋪墊.

二、新課。

導(dǎo)入2的絕對(duì)值等于幾?-2的絕對(duì)值等于幾?絕對(duì)值等于2的數(shù)是誰(shuí)?在數(shù)軸上表示出來(lái).

講述求絕對(duì)值等于2的數(shù)可以用方程來(lái)表示,這樣的方程叫做絕對(duì)值方程.顯然,它的解有二個(gè),一個(gè)是2,另一個(gè)是-2.

提問(wèn)如何解絕對(duì)值方程.

講述根據(jù)絕對(duì)值的意義,由右面的數(shù)軸可以看出,不等式的解集就是表示數(shù)軸上到原點(diǎn)的距離小于2的點(diǎn)的集合.

質(zhì)疑的解集有幾部分?為什么也是它的解集?

講述這個(gè)集合中的數(shù)都比-2小,從數(shù)軸上可以明顯看出它們的絕對(duì)值都比2大,所以是解集的一部分.在解時(shí)輕易出現(xiàn)只求出這部分解集,而丟掉這部解集的錯(cuò)誤.

(1);。

(2)。

設(shè)問(wèn)假如在中的,也就是怎樣解?

點(diǎn)撥可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.

所以,原不等式的解集是。

設(shè)問(wèn)假如中的是,也就是怎樣解?

點(diǎn)撥可以把看成一個(gè)整體,也就是把看成,按照的解法來(lái)解.

由得。

由得。

所以,原不等式的解集是。

口答.畫出數(shù)軸后在數(shù)軸上表示絕對(duì)值等于2的數(shù).

畫出數(shù)軸,思考答案。

不等式的解集表示為。

畫出數(shù)軸。

思考答案。

不等式的解集為。

或表示為,或。

筆答。

(1)。

(2),或。

筆答。

筆答。

根據(jù)絕對(duì)值的意義自然引出絕對(duì)值方程()的解法.

高中數(shù)學(xué)不等式教案篇十三

教學(xué)目標(biāo)。

1.掌握分析法證明不等式;

2.理解分析法實(shí)質(zhì)――執(zhí)果索因;

3.提高證明不等式證法靈活性.

教學(xué)重點(diǎn)分析法。

教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解。

教學(xué)方法啟發(fā)引導(dǎo)式。

教學(xué)活動(dòng)。

(一)導(dǎo)入新課。

(教師活動(dòng))教師提出問(wèn)題,待學(xué)生回答和思考后點(diǎn)評(píng).。

(學(xué)生活動(dòng))回答和思考教師提出的問(wèn)題.。

[問(wèn)題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?

[問(wèn)題2]能否用比較法或綜合法證明不等式:

[點(diǎn)評(píng)]在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法.(板書課題)。

設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,

(二)新課講授。

【嘗試探索、建立新知】。

[問(wèn)題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的不等式時(shí),說(shuō)明了什么呢?

[問(wèn)題3]說(shuō)明要證明的不等式成立的理由是什么呢?

【例題示范、學(xué)會(huì)應(yīng)用】。

(學(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問(wèn)題,與教師一道完成問(wèn)題的論證.。

高中數(shù)學(xué)不等式教案篇十四

概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡(jiǎn)單不等式的解集.

(二)內(nèi)容解析。

現(xiàn)實(shí)生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實(shí)際出發(fā)導(dǎo)入常見(jiàn)行程問(wèn)題的不等關(guān)系,使學(xué)生充分認(rèn)識(shí)到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過(guò)對(duì)實(shí)例的進(jìn)一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個(gè)概念.前面學(xué)過(guò)方程、方程的解、解方程的概念.通過(guò)類比教學(xué)、不等式、不等式的解、解不等式幾個(gè)概念不難理解.但是對(duì)于初學(xué)者而言,不等式的解集的理解就有一定的難度.因此教材又進(jìn)行數(shù)形結(jié)合,用數(shù)軸來(lái)表示不等式的解集,這樣直觀形象的表示不等式的解集,對(duì)理解不等式的解集有很大的幫助.

基于以上分析,可以確定本節(jié)課的教學(xué)重點(diǎn)是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上.

二、目標(biāo)和目標(biāo)解析。

(一)教學(xué)目標(biāo)。

1.理解不等式的概念。

2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系。

3.了解解不等式的概念。

4.用數(shù)軸來(lái)表示簡(jiǎn)單不等式的解集。

(二)目標(biāo)解析。

1.達(dá)成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式.

2.達(dá)成目標(biāo)2的標(biāo)志是:能理解不等式的解是解集中的某一個(gè)元素,而解集是所有解組成的一個(gè)集合.

3.達(dá)成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個(gè)過(guò)程.

4、達(dá)成目標(biāo)4的標(biāo)志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個(gè)重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具.操作時(shí),要掌握好“兩定”:一是定界點(diǎn),一般在數(shù)軸上只標(biāo)出原點(diǎn)和界點(diǎn)即可,邊界點(diǎn)含于解集中用實(shí)心圓點(diǎn),或者用空心圓點(diǎn);二是定方向,小于向左,大于向右.

三、教學(xué)問(wèn)題診斷分析。

本節(jié)課實(shí)質(zhì)是一節(jié)概念課,對(duì)于不等式、不等式的解以及解不等式可通過(guò)類比方程、方程的解、解方程類比教學(xué),學(xué)生不難理解,但是對(duì)不等式的解集的理解就有一定的難度.

因此,本節(jié)課的教學(xué)難點(diǎn)是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.

四、教學(xué)支持條件分析。

利用多媒體直觀演示課前引入問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣.

五、教學(xué)過(guò)程設(shè)計(jì)。

(一)動(dòng)畫演示情景激趣。

設(shè)計(jì)意圖:通過(guò)實(shí)例創(chuàng)設(shè)情境,從“等”過(guò)渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣.

(二)立足實(shí)際引出新知。

小組討論,合作交流,然后小組反饋交流結(jié)果.

最后,老師將小組反饋意見(jiàn)進(jìn)行整理(學(xué)生沒(méi)有討論出來(lái)的思路老師進(jìn)行補(bǔ)充)。

高中數(shù)學(xué)不等式教案篇十五

課前復(fù)習(xí)提問(wèn)時(shí),給學(xué)生的復(fù)習(xí)思考時(shí)間太短,開(kāi)始問(wèn)了幾個(gè)學(xué)生不等式的三個(gè)基本性質(zhì),有的答不出來(lái),有的答對(duì)一點(diǎn)但不完整。在很多學(xué)生沒(méi)有作好充分準(zhǔn)備時(shí)問(wèn)到這個(gè)問(wèn)題有點(diǎn)慌亂,我覺(jué)得更好的辦法是先讓學(xué)生看一下書復(fù)習(xí)一下不等式的三個(gè)基本性質(zhì),然后合起書再叫同學(xué)來(lái)說(shuō)效果會(huì)更好。

例2學(xué)生對(duì)實(shí)際問(wèn)題中的字母取值范圍考慮不全,在講解這個(gè)問(wèn)題時(shí)帶有點(diǎn)填壓式,告訴學(xué)生字母的取值要大于或等于0,講過(guò)之后可能學(xué)生印象還是不深。我覺(jué)得應(yīng)先舉一些實(shí)際生活中常見(jiàn)的例子,比如在數(shù)人的個(gè)數(shù)時(shí)字母應(yīng)取什么值等,多列舉一些例子讓學(xué)生感性上認(rèn)識(shí),從而引導(dǎo)學(xué)生思考例2的字母的.取值范圍。

例3學(xué)生根據(jù)三邊關(guān)系往往只列出一個(gè)不等式,在教學(xué)時(shí)我先采取了提問(wèn)的方式,給出了三個(gè)問(wèn)題,引出三個(gè)不等式,然后讓學(xué)生移項(xiàng)變形,又得出三個(gè)不等式,對(duì)總結(jié)三角形任意兩邊之差小于第三邊做了輔墊。教學(xué)效果較好。

學(xué)生在回答問(wèn)題的過(guò)程中,為了更快的得到自己預(yù)期的答案,往往打斷學(xué)生的回答,剝奪了學(xué)生的主動(dòng)權(quán);比如學(xué)生在總結(jié)不等式性質(zhì)3時(shí),總怕他們出錯(cuò)所以老師急于公布結(jié)論。有時(shí)在學(xué)生思考問(wèn)題時(shí)做一些補(bǔ)充打斷學(xué)生的思路,這樣對(duì)學(xué)生思考問(wèn)題又帶來(lái)一定影響;課堂小結(jié)中學(xué)生的體會(huì)與收獲談的不是很好。

高中數(shù)學(xué)不等式教案篇十六

《不等式的基本性質(zhì)》它是北師大版八年級(jí)下冊(cè)第一章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標(biāo),教學(xué)重難點(diǎn),教法學(xué)法,教學(xué)過(guò)程這五個(gè)方面談?wù)勎覍?duì)這節(jié)課處理的一些不成熟的看法:

本節(jié)內(nèi)容不等式,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,所以對(duì)不等式的學(xué)習(xí)有著重要的實(shí)際意義。同時(shí),不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。

根據(jù)《新課程標(biāo)準(zhǔn)》的要求,教材的`內(nèi)容兼顧我校八年級(jí)學(xué)生的特點(diǎn),我制定了如下教學(xué)目標(biāo):

知識(shí)與技能:

1.感受生活中存在的不等關(guān)系,了解不等式的意義。

過(guò)程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過(guò)程,初步體會(huì)不等式與等式的異同。

情感態(tài)度與價(jià)值觀:經(jīng)歷由具體實(shí)例建立不等式模型的過(guò)程,進(jìn)一步符號(hào)感與數(shù)學(xué)化的能力。

教學(xué)重難點(diǎn):

高中數(shù)學(xué)不等式教案篇十七

1、使學(xué)生熟練掌握一元一次不等式的解法,初步認(rèn)識(shí)一元一次不等式的應(yīng)用價(jià)值;。

3、讓學(xué)生在分組活動(dòng)和班級(jí)交流的過(guò)程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)并感受成功的喜悅,從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。

教學(xué)難點(diǎn)。

熟練并準(zhǔn)確地解一元一次不等式。

知識(shí)重點(diǎn)。

熟練并準(zhǔn)確地解一元一次不等式。

教學(xué)過(guò)程。

(師生活動(dòng))設(shè)計(jì)理念。

你會(huì)運(yùn)用已學(xué)知識(shí)解這個(gè)不等式嗎?請(qǐng)你說(shuō)說(shuō)解這個(gè)不等式的過(guò)程.以學(xué)生身邊的事例為背景,突出不等式與現(xiàn)實(shí)的聯(lián)系,這個(gè)問(wèn)題為契機(jī)引入新課,可以激發(fā)學(xué)生的學(xué)習(xí)興趣。

探究新知。

1、在學(xué)生充分發(fā)表意見(jiàn)的基礎(chǔ)上,師生共同歸納出這個(gè)不等式的解法.教師規(guī)范地板書解的過(guò)程.

2、例題.

解下列不等式,并在數(shù)軸上表示解集:

(1)x50(2)-4x3。

(3)7-3x10(4)2x-33x+1。

分組活動(dòng).先獨(dú)立思考,然后請(qǐng)4名學(xué)生上來(lái)板演,其余同學(xué)組內(nèi)相互交流,作出記錄,最后各組選派代表發(fā)言,點(diǎn)評(píng)板演情況.教師作總結(jié)講評(píng)并示范解題格式.

3、教師提問(wèn):從以上的求解過(guò)程中,你比較出它與解方程有什么異同?

立解決;還有一些學(xué)生雖不能解答,但在老師的引導(dǎo)下也能受到啟發(fā),這比單純的教師講解更能調(diào)動(dòng)學(xué)習(xí)的積極性.另外,由學(xué)生自己來(lái)糾錯(cuò),可培養(yǎng)他們的批判性思維和語(yǔ)言表達(dá)能力.

比較不等式與解方程的異同中滲透著類比思想.

鞏固新知。

1、解下列不等式,并在數(shù)軸上表示解集:

(1)(2)-8x10。

2、用不等式表示下列語(yǔ)句并寫出解集:

(1)x的3倍大于或等于1;(2)y的的差不大于-2.

解決問(wèn)題。

測(cè)量一棵樹(shù)的樹(shù)圍(樹(shù)干的周長(zhǎng))可以計(jì)算它的樹(shù)齡一般規(guī)定以樹(shù)干離地面1.5m的地方作為測(cè)量部位.某樹(shù)栽種時(shí)的樹(shù)圍為5cm,以后樹(shù)圍每年增加約3cm.這棵樹(shù)至少生一長(zhǎng)多少年,其樹(shù)圍才能超過(guò)2.4m?讓學(xué)生在解決問(wèn)題的過(guò)程中深刻感悟數(shù)學(xué)來(lái)源于實(shí)踐,又服務(wù)于實(shí)踐,以培養(yǎng)他們的數(shù)學(xué)應(yīng)用意識(shí)。

總結(jié)歸納圍繞以下幾個(gè)問(wèn)題:

1、這節(jié)課的主要內(nèi)容是什么?

2、通過(guò)學(xué)習(xí),我取得了哪些收獲?

3、還有哪些問(wèn)題需要注意?

讓學(xué)生自己歸納,教師僅做必要的補(bǔ)充和點(diǎn)撥.讓學(xué)生自己歸納小結(jié),給學(xué)生創(chuàng)造自我評(píng)價(jià)和自我表現(xiàn)的機(jī)會(huì),以達(dá)到激發(fā)興趣、鞏固知識(shí)的目的。

小結(jié)與作業(yè)。

布置作業(yè)。

1、必做題:教科書第134~135頁(yè)習(xí)題9.1第6題(3)(4)第10題。

2、選做題:教科書第135頁(yè)習(xí)題9、12題.

本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)。

通過(guò)創(chuàng)設(shè)與學(xué)生實(shí)際生活密切聯(lián)系的向題情境,并由學(xué)生根據(jù)自己掌握的知識(shí)與經(jīng)驗(yàn)列出不等式,探究它的解法,可以激發(fā)學(xué)生的學(xué)習(xí)動(dòng)力,喚起他們的求知欲望,促使學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口,積極參與教學(xué)的.整個(gè)過(guò)程,在教師的指導(dǎo)下,主動(dòng)地、生動(dòng)活潑地、富有個(gè)性地學(xué)習(xí).

新課程理念要求教師向?qū)W生提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì).本課教學(xué)過(guò)程中貫穿了嘗試引導(dǎo)示范歸納練習(xí)點(diǎn)評(píng)等一系列環(huán)節(jié),旨在改變學(xué)生的學(xué)習(xí)方式,將被動(dòng)的、接受式的學(xué)習(xí)方式轉(zhuǎn)變?yōu)閯?dòng)手實(shí)踐、自主探索和合作交流等方式.教師的組織者、引導(dǎo)者與合作者的角色在這節(jié)課中得到了充分的演繹.教師要尊重學(xué)生的個(gè)體差異,滿足多樣化學(xué)習(xí)的需求.對(duì)學(xué)習(xí)確實(shí)有困難的學(xué)生,要及時(shí)給予關(guān)心和幫助,鼓勵(lì)他們主動(dòng)參與數(shù)學(xué)學(xué)習(xí)活動(dòng),嘗試著用自己的方式去解決問(wèn)題,勇于發(fā)表自己的觀點(diǎn).除了演好組織者、引導(dǎo)者的角色外,教師還應(yīng)爭(zhēng)當(dāng)伯樂(lè)和雷鋒,多給學(xué)生以贊許、鼓勵(lì)、關(guān)愛(ài)和幫助,讓他們?cè)诜e極愉悅的氛圍中努力學(xué)習(xí).

高中數(shù)學(xué)不等式教案篇十八

1、若兩個(gè)未知數(shù)的解集在數(shù)軸上表示同向左,就取在左邊的未知數(shù)的解集為不等式組的解集,此乃“同小取小”。

2、若兩個(gè)未知數(shù)的解集在數(shù)軸上表示同向右,就取在右邊的未知數(shù)的解集為不等式組的解集,此乃“同大取大”。

3、若兩個(gè)未知數(shù)的解集在數(shù)軸上相交,就取它們之間的值為不等式組的.解集。若x表示不等式的解集,此時(shí)一般表示為a。

4、若兩個(gè)未知數(shù)的解集在數(shù)軸上向背,那么不等式組的解集就是空集,不等式組無(wú)解。此乃“向背取空”。

高中數(shù)學(xué)不等式教案篇十九

教學(xué)重點(diǎn)分析法。

教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解。

教學(xué)方法啟發(fā)引導(dǎo)式。

教學(xué)活動(dòng)。

(一)導(dǎo)入新課。

(教師活動(dòng))教師提出問(wèn)題,待學(xué)生回答和思考后點(diǎn)評(píng).。

(學(xué)生活動(dòng))回答和思考教師提出的問(wèn)題.。

[問(wèn)題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?

[問(wèn)題2]能否用比較法或綜合法證明不等式:

在證明不等式時(shí),若用比較法或綜合法難以下手時(shí),可采用另一種證明方法:分析法.(板書課題)。

設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)證明不等式的方法.指出用比較法和綜合法證明不等式的不足之處,

激發(fā)學(xué)生學(xué)習(xí)新的證明不等式知識(shí)的積極性,導(dǎo)入本節(jié)課學(xué)習(xí)內(nèi)容:用分析法證明不等式.。

(二)新課講授。

【嘗試探索、建立新知】。

[問(wèn)題2]當(dāng)我們尋找的充分條件已經(jīng)是成立的`不等式時(shí),說(shuō)明了什么呢?

[問(wèn)題3]說(shuō)明要證明的不等式成立的理由是什么呢?

分析法證明不等式的概念.(見(jiàn)課本)。

【例題示范、學(xué)會(huì)應(yīng)用】。

(學(xué)生活動(dòng))學(xué)生在教師引導(dǎo)下,研究問(wèn)題,與教師一道完成問(wèn)題的論證.。

【本文地址:http://www.aiweibaby.com/zuowen/9927700.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔