編寫教案是教師備課工作的重要組成部分。教案應該根據(jù)教材內(nèi)容和學科特點,選取合適的教學資源。想要寫好一份教案,不妨參考一下小編為大家準備的教案范文。
多項式的因式分解教案篇一
2、鞏固因式分解常用的三種方法。
3、選擇恰當?shù)姆椒ㄟM行因式分解。
4、應用因式分解來解決一些實際問題。
5、體驗應用知識解決問題的樂趣。
一、創(chuàng)設情景:若a=101,b=99,求a2-b2的值。
利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧。
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。
(7).2πr+2πr=2π(r+r)因式分解。
2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點:(1).分解的對象必須是多項式.
(2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
4、強化訓練。
試一試把下列各式因式分解:。
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。
三、例題講解。
例1、分解因式。
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。
(3)(4)y2+y+例2、分解因式。
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。
例3、分解因式。
1、72-2(13x-7)22、8a2b2-2a4b-8b3。
三、知識應用。
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。
四、拓展應用。
2、20042+2004被2005整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對因式分解又有哪些新的認識?
多項式的因式分解教案篇二
課標要求:理解多項式與多項式相乘的法則,并運用法則進行準確運算。
選用教材:選自華東師范大學出版社出版的《數(shù)學》八年級上冊第十三章第3節(jié)。課題是《多項式與多項式相乘》,課時為1課時。
教材地位:本課學習多項式與多項式相乘的法則,對學生初中階段學好必備的基礎知識與基本技能、解決實際問題起到基礎作用,在提高學生的運算能力方面有重要的作用。同時,對平方差與完全平方公式的應用以及楊輝三角等后續(xù)教學內(nèi)容起到奠基作用。
2、教學目標
知識與技能目標:理解并掌握多項式乘以多項式的法則,能夠按步驟進行簡單的多項式乘法的運算。
過程與方法目標:
1、通過創(chuàng)設情景中的問題的探索,體驗數(shù)學是一個充滿觀察、歸納的過程;
3、通過為學生提供自主練習的活動空間,提高學生的運算能力;
4、借助具體到一般的認知規(guī)律,培養(yǎng)學生探索問題的能力和創(chuàng)新的品質(zhì)。
情感、態(tài)度與價值觀目標:
學生通過主動參與探索法則和拓展探索等的學習活動,領(lǐng)悟轉(zhuǎn)化思想,體會數(shù)學與生活的聯(lián)系,感受數(shù)學的應用價值,從而激發(fā)學習數(shù)學的興趣。
3、教學重點:多項式乘以多項式法則的理解和應用;
4、教學難點:將多項式與多項式的乘法轉(zhuǎn)化為單項式與多項式的乘法,防止漏乘、重復乘和看錯符號。
本節(jié)課是在學習了“單項式與多項式相乘”的基礎上進行的,學生已經(jīng)掌握了“單項式與多項式相乘”的運算法則,因此沒有把時間過多地放在復習舊知上,而是讓學生親身參加探索發(fā)現(xiàn),從而獲取新知。在法則的得出過程中,讓學生在探索的過程中自己發(fā)現(xiàn)總結(jié)規(guī)律,提高了學生的積極性。在法則的應用這一環(huán)節(jié)選配一些變式練習,通過書上的基本練習達到訓練雙基的目的,通過變式練習達到發(fā)展智力、提高能力的目的。
注重體現(xiàn)教師的導向作用和學生的主體地位。教學過程中盡力引導學生成為知識的發(fā)現(xiàn)者,把教師的點撥和學生解決問題結(jié)合起來,為學生創(chuàng)設情境,從而不斷激發(fā)學生的求知欲望和學習興趣,使學生輕松愉快地學習。
1、自主學習歸納
2、小組討論
多項式的因式分解教案篇三
“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎,或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標。
(1)會推導乘法公式。
(2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進行因式分解。
(4)了解因式分解的一般步驟。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關(guān)鍵。
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。
2.1平方差公式1課時。
2.2完全平方公式2課時。
初中優(yōu)秀......
初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,教案有利于教學水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!下面是小編為......
多項式的因式分解教案篇四
因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學生學習了整式運算的基礎上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎,為數(shù)學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學生接受對立統(tǒng)一的觀點,培養(yǎng)學生善于觀察、善于分析、正確預見、解決問題的能力。
通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發(fā)表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。
3、能運用提公因式法、公式法進行綜合運用。
4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學生的化歸思想。
靈活運用平方差公式進行分解因式。
平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
多項式的因式分解教案篇五
“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎,或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。
2、教學目標。
(1)會推導乘法公式。
(2)在應用乘法公式進行計算的基礎上,感受乘法公式的作用和價值。
(3)會用提公因式法、公式法進行因式分解。
(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點、難點和關(guān)鍵。
重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。
難點:正確運用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學的方法和策略:
3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。
三、課時安排:
2.1平方差公式1課時。
2.2完全平方公式2課時。
多項式的因式分解教案篇六
1、會運用因式分解進行簡單的多項式除法。
二、教學重點與難點教學重點:
教學重點。
因式分解在多項式除法和解方程兩方面的應用。
教學難點:
應用因式分解解方程涉及較多的推理過程。
三、教學過程。
(一)引入新課。
(二)師生互動,講授新課。
一個小問題:這里的x能等于3/2嗎?為什么?
想一想:那么(4x—9)(3—2x)呢?練習:課本p162課內(nèi)練習。
合作學習。
等練習:課本p162課內(nèi)練習2。
(三)梳理知識,總結(jié)收獲因式分解的兩種應用:
(四)布置課后作業(yè)。
作業(yè)本6、42、課本p163作業(yè)題(選做)。
多項式的因式分解教案篇七
知識點:
因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。
教學目標:
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。
考查重難點與常見題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。
教學過程:
多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:
如多項式。
其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。
(2)運用公式法,即用。
寫出結(jié)果。
(3)十字相乘法。
(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。
分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。
(5)求根公式法:如果有兩個根x1,x2,那么。
1、教學實例:學案示例。
2、課堂練習:學案作業(yè)。
3、課堂:
4、板書:
5、課堂作業(yè):學案作業(yè)。
6、教學反思:
多項式的因式分解教案篇八
根據(jù)大綱要求,結(jié)合本教材特點和學生認知能力,將教學目標確定為:
知識與技能:1、理解因式分解的含義,能判斷一個式子的變形是否為因式分解。
2、熟練運用提取公因式法分解因式。
過程與方法:在教學過程中,體會類比的數(shù)學思想逐步形成獨立思考,主動探索的習慣。
情感態(tài)度與價值觀:通過現(xiàn)實情景,讓學生認識到數(shù)學的應用價值,并提高學生關(guān)注生存環(huán)境的環(huán)保意識。
多項式的因式分解教案篇九
教學過程中滲透類比的數(shù)學思想,形成新的知識結(jié)構(gòu)體系;設置探究式教學,讓學生經(jīng)歷知識的形成,從而達到對知識的深刻理解與靈活應用。
學法:自主、合作、探索的學習方式。
在教學活動中,既要提高學生獨立解決問題的能力,又要培養(yǎng)團結(jié)協(xié)作精神,拓展學生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。
多項式的因式分解教案篇十
教學設計示例。
――完全平方公式(1)。
教學目標。
2.理解完全平方式的意義和特點,培養(yǎng)學生的判斷能力.
3.進一步培養(yǎng)學生全面地觀察問題、分析問題和逆向思維的能力.。
4.通過分解因式的教學,使學生進一步體會“把一個代數(shù)式看作一個字母”的換元思想。
教學重點和難點。
重點:運用完全平方式分解因式.
難點:靈活運用完全平方公式公解因式.
教學過程設計。
一、復習。
1.問:什么叫把一個多項式因式分解?我們已經(jīng)學習了哪些因式分解的方法?
答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解.我們學過的因式分解的方法有提取公因式法及運用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2(2)16m4-n4.
解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。
(2)16m4-n4=(4m2)2-(n2)2。
=(4m2+n2)(4m2-n2)。
=(4m2+n2)(2m+n)(2m-n).
問:我們學過的乘法公式除了平方差公式之外,還有哪些公式?
答:有完全平方公式.
請寫出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.
這節(jié)課我們就來討論如何運用完全平方公式把多項式因式分解.
二、新課。
和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到。
a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式.運用這兩個式子,可以把形式是完全平方式的多項式分解因式.
問:具備什么特征的多項是完全平方式?
答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式.
問:下列多項式是否為完全平方式?為什么?
(1)x2+6x+9;(2)x2+xy+y2;
(3)25x4-10x2+1;(4)16a2+1.
答:(1)式是完全平方式.因為x2與9分別是x的平方與3的平方,6x=2·x·3,所以。
x2+6x+9=(x+3).
(2)不是完全平方式.因為第三部分必須是2xy.
(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。
25x-10x+1=(5x-1).
(4)不是完全平方式.因為缺第三部分.
答:完全平方公式為:
其中a=3x,b=y,2ab=2·(3x)·y.
例1把25x4+10x2+1分解因式.
分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍.所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式.
解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2把1-m+分解因式.
問:請同學分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?
答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“”是的平方,第二項“-m”是1與m/4的積的2倍的相反數(shù),因此這個多項式是完全平方式,可以用完全平方公式分解因式.
解法11-m+=1-2·1·+()2=(1-)2.
解法2先提出,則。
1-m+=(16-8m+m2)。
=(42-2·4·m+m2)。
=(4-m)2.
第12頁。
多項式的因式分解教案篇十一
3、通過總結(jié)法則,培養(yǎng)學生的抽象概括能力、訓練學生的綜合解題能力和計算能力。
4、培養(yǎng)學生耐心細致、嚴謹?shù)臄?shù)學思維品質(zhì)。
2、理解法則導出的根據(jù)。
一課時。
投影儀、膠片。
(1)用式子表示乘法分配律。
(3)計算:
(4)填空:
規(guī)律:多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加。
(1)多項式除以單項式,商式與被除式的項數(shù)相同,不可丟項,如(1)中容易丟掉最后一項。
(2)要求學生說出式子每步變形的依據(jù)。
(3)讓學生養(yǎng)成檢驗的'習慣,利用乘除逆運算,檢驗除的對不對。
說明:注意弄清題中運算順序,正確運用有關(guān)法則、公式。
練習:
(1)p1501,2。
(2)錯例辯析:
有兩個錯誤:
第一,丟項,被除式有三項,商式只有二項,丟了最后一項1;
第二項是符號上錯誤,商式第一項的符號為“-”,正確答案為()。
2、運用該法則應注意什么?
正確地把多項式除以單項式問題轉(zhuǎn)化為單項式除以單項式問題。計算不可丟項,分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項;“消掉”對加減法而言,減項。
p152a組1,2。
多項式的因式分解教案篇十二
1、知識與能力:
1)進一步鞏固相似三角形的知識.
2)能夠運用三角形相似的知識,解決不能直接測量物體的長度和高度(如測量金字塔高度問題、測量河寬問題)等的一些實際問題.
2.過程與方法:
經(jīng)歷從實際問題到建立數(shù)學模型的過程,發(fā)展學生的抽象概括能力。
3.情感、態(tài)度與價值觀:
1)通過利用相似形知識解決生活實際問題,使學生體驗數(shù)學來源于生活,服務于生活。
2)通過對問題的探究,培養(yǎng)學生認真踏實的學習態(tài)度和科學嚴謹?shù)膶W習方法,通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。
(三)教學重點、難點和關(guān)鍵。
重點:利用相似三角形的知識解決實際問題。
難點:運用相似三角形的判定定理構(gòu)造相似三角形解決實際問題。
關(guān)鍵:將實際問題轉(zhuǎn)化為數(shù)學模型,利用所學的知識來進行解答。
【教法與學法】。
(一)教法分析。
為了突出教學重點,突破教學難點,按照學生的認知規(guī)律和心理特征,在教學過程中,我采用了以下的教學方法:
1.采用情境教學法。整節(jié)課圍繞測量物體高度這個問題展開,按照從易到難層層推進。在數(shù)學教學中,注重創(chuàng)設相關(guān)知識的現(xiàn)實問題情景,讓學生充分感知“數(shù)學來源于生活又服務于生活”。
2.貫徹啟發(fā)式教學原則。教學的各個環(huán)節(jié)均從提出問題開始,在師生共同分析、討論和探究中展開學生的思路,把啟發(fā)式思想貫穿與教學活動的全過程。
3.采用師生合作教學模式。本節(jié)課采用師生合作教學模式,以師生之間、生生之間的全員互動關(guān)系為課堂教學的核心,使學生共同達到教學目標。教師要當好“導演”,讓學生當好“演員”,從充分尊重學生的潛能和主體地位出發(fā),課堂教學以教師的“導”為前提,以學生的“演”為主體,把較多的課堂時間留給學生,使他們有機會進行獨立思考,相互磋商,并發(fā)表意見。
(二)學法分析。
按照學生的認識規(guī)律,遵循教師為主導,學生為主體的指導思想,在本節(jié)課的學習過程中,采用自主探究、合作交流的學習方式,讓學生思考問題、獲取知識、掌握方法,運用所學知識解決實際問題,啟發(fā)學生從書本知識到社會實踐,學以致用,力求促使每個學生都在原有的基礎上得到有效的發(fā)展。
【教學過程】。
一、知識梳理。
1、判斷兩三角形相似有哪些方法?
1)定義:2)定理(平行法):。
3)判定定理一(邊邊邊):。
4)判定定理二(邊角邊):。
5)判定定理三(角角):。
2、相似三角形有什么性質(zhì)?
對應角相等,對應邊的比相等。
(通過對知識的梳理,幫助學生形成自己的知識結(jié)構(gòu)體系,為解決問題儲備理論依據(jù)。)。
二、情境導入。
胡夫金字塔是埃及現(xiàn)存規(guī)模的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個斜面正對東南西北四個方向,塔基呈正方形,每邊長約230多米。據(jù)考證,為建成大金字塔,共動用了10萬人花了時間.原高146.59米,但由于經(jīng)過幾千年的風吹雨打,頂端被風化吹蝕.所以高度有所降低。
(數(shù)學教學從學生的生活體驗和客觀存在的事實或現(xiàn)實課題出發(fā),為學生提供較感興趣的問題情景,幫助學生順利地進入學習情景。同時,問題是知識、能力的生長點,通過富有實際意義的問題能夠激活學生原有認知,促使學生主動地進行探索和思考。)。
三、例題講解。
例1(教材p49例3——測量金字塔高度問題)。
《相似三角形的應用》教學設計分析:根據(jù)太陽光的光線是互相平行的特點,可知在同一時刻的陽光下,豎直的兩個物體的影子互相平行,從而構(gòu)造相似三角形,再利用相似三角形的判定和性質(zhì),根據(jù)已知條件,求出金字塔的高度.
解:略(見教材p49)。
問:你還可以用什么方法來測量金字塔的高度?(如用身高等)。
解法二:用鏡面反射(如圖,點a是個小鏡子,根據(jù)光的反射定律:由入射角等于反射角構(gòu)造相似三角形).(解法略)。
例2(教材p50練習?——測量河寬問題)。
《相似三角形的應用》教學設計《相似三角形的應用》教學設計分析:設河寬ab長為xm,由于此種測量方法構(gòu)造了三角形中的平行截線,故可得到相似三角形,因此有,即《相似三角形的應用》教學設計.再解x的方程可求出河寬.
解:略(見教材p50)。
問:你還可以用什么方法來測量河的寬度?
解法二:如圖構(gòu)造相似三角形(解法略).
四、鞏固練習。
五、回顧小結(jié)。
一)相似三角形的應用主要有如下兩個方面。
1測高(不能直接使用皮尺或刻度尺量的)。
2測距(不能直接測量的兩點間的距離)。
二)測高的方法。
測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長的比例”的原理解決。
三)測距的方法。
測量不能到達兩點間的距離,常構(gòu)造相似三角形求解。
(落實教師的引導作用以及學生的主體地位,既訓練學生的概括歸納能力,又有助于學生在歸納的過程中把所學的知識條理化、系統(tǒng)化。)。
六、拓展提高。
怎樣利用相似三角形的有關(guān)知識測量旗桿的高度?
七、作業(yè)。
課本習題27.210題、11題。
【本文地址:http://aiweibaby.com/zuowen/12596866.html】