教案可以幫助教師預(yù)測學(xué)生可能遇到的困難和問題。其次,教案應(yīng)選擇適當(dāng)?shù)慕虒W(xué)方法,根據(jù)學(xué)生的學(xué)習(xí)特點和教學(xué)內(nèi)容進行靈活運用。尋找一份完善的教案范文嗎?以下是小編為大家整理的一些,希望對大家有所幫助。
函數(shù)的教案篇一
3.,(0,+)。
【拓展引導(dǎo)】。
當(dāng)時,的取值范圍是。
當(dāng)時,的取值范圍是。
【總結(jié)】20xx年數(shù)學(xué)網(wǎng)為小編在此為您收集了此文章高一數(shù)學(xué)教案:對數(shù)函數(shù),今后還會發(fā)布更多更好的'文章希望對大家有所幫助,祝您在數(shù)學(xué)網(wǎng)學(xué)習(xí)愉快!
函數(shù)的教案篇二
教學(xué)目標:
1、能夠用熱情、歡快的聲音演唱《木瓜恰恰恰》,感受歌曲的歡快情緒和喜悅心情。
2、能夠用打擊樂器為歌曲伴奏。
3、用叫賣的演唱形式表達歌曲,了解一些相關(guān)文化以及“叫賣”的藝術(shù)形式。
教學(xué)重點及難點:
1、用熱情、歡快的聲音演唱《木瓜恰恰恰》。
2、正確地演唱《木瓜恰恰恰》的弱起小節(jié)及切分節(jié)奏。教學(xué)準備:多媒體(ppt)、flash動畫、歌曲(mp3)、打擊樂器(沙錘、雙響筒、碰鈴等)。
教學(xué)過程:
一、播放《賣湯圓》和《冰糖葫蘆》,學(xué)生走進教室。讓學(xué)生感受叫賣調(diào)(歡快、活潑、幽默、詼諧)。
導(dǎo)課:師:同學(xué)們,剛才聽的歌曲你們熟悉嗎?你們知道是賣什么的?像這種類型的歌曲叫什么歌?介紹叫賣歌。今天,咱們學(xué)習(xí)一首印尼叫賣歌曲《木瓜恰恰恰》板書課題。
二、走入印尼國家。
1、師:印尼是哪個國家?知道嗎?(印度尼西亞)。你們想去看看嗎?師:印度尼西亞,是“水中島國”,是由許多大小島嶼組成的群島國家,又稱“千島之國”。這里火山活躍,又被稱為“火山之國”。該國家盛產(chǎn)水果。它的首都是雅加達,有“歌舞之邦”的美稱,生活在各島上的100多個民族都有自己獨特的民歌、舞蹈和樂器,各族人民都非常熱愛音樂,尤其在印度尼西亞的著名旅游勝地——巴厘島,舞蹈已成為人民生活的一部分。
師:你們感受到印尼美嗎?(學(xué)生答)。
2、出示印尼水果市場。
師:我們又來到了哪里?(水果市場)印度尼西亞的水果特別多,集市上到處都有各種各樣的水果,可真是琳瑯滿目。到處都有吆喝聲叫賣水果聲。咱們有沒有興趣來學(xué)學(xué)各種叫賣聲,看誰的叫賣聲最能吸引顧客來光顧。
二、感受歌曲,解決重難點。
1、播放《木瓜恰恰恰》flash動畫。
師:歌曲給你帶來什么感受?(歡快、活潑、高興等)。
2、范唱歌曲。
師:你聽出來歌曲中唱到哪些水果?(番石榴、菠蘿等)。
3、介紹弱起小節(jié)和切分音。
4、跟老師一起讀有節(jié)奏的.叫賣聲,雙手拍腿。
師:這個恰恰恰是輕快的還是笨重的?出現(xiàn)在每個樂句的前面還是末尾?(師生一起說“恰恰恰”。)。
4、師生一起隨著歌聲唱唱輕快的“恰恰恰”。(“恰恰恰”聲音要求輕巧、有彈性)。
5.如果讓你給這段歌聲加上伴奏的話,你覺得在哪兒加比較合適?(生略)讓我們拿起自己制作的沙錘或其他打擊樂器為音樂加上伴奏。
6、師:除了用樂器還可以用什么來表現(xiàn)恰恰恰韻律(扭胯)。
7、我們一起邊說邊做,看誰的動作既能合上音樂的感覺又和別人都不一樣(師生共同扭胯)。(發(fā)現(xiàn)較好學(xué)生,請她上臺帶領(lǐng)同學(xué)們再來一次。)。
8、師:剛才我們又唱又跳,真開心!師:下面我們來學(xué)唱這首歌。
四、學(xué)唱歌曲。
1、讓學(xué)生用“啦”哼唱歌曲。
2、跟琴學(xué)唱歌譜。
3、完整演唱歌譜。
4、按節(jié)奏讀歌詞。
5、教唱歌詞。
6、完整演唱歌曲。
五、用多種形式表演歌曲。
分組唱:一組唱,另一組打節(jié)奏。
師生合作:跟伴奏,邊唱邊表演打節(jié)奏。
教師小結(jié)。
師:今天,我們通過對叫賣歌曲的學(xué)習(xí),了解了叫賣歌曲的特點,這些極富情趣的演唱給了我們極大的藝術(shù)享受。其實啊,這些音樂都來源于我們的生活,只要你多做有心人,你也一定可以創(chuàng)作出動聽有趣的音樂。好,今天的音樂課我們就上到這里,下課。
函數(shù)的教案篇三
難點:其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
三.教學(xué)方法和用具。
方法:歸納總結(jié),數(shù)形結(jié)合,分析驗證。
用具:幻燈片,幾何畫板,黑板。
四.教學(xué)過程。
(幻燈片見附件)。
1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學(xué)生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
函數(shù)的教案篇四
本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
二、學(xué)情分析。
本節(jié)課主要是研究一次函數(shù)的圖象與性質(zhì),是在學(xué)習(xí)了正比例函數(shù)的.圖象與性質(zhì),并初步了解了如何研究一個具體函數(shù)的圖象與性質(zhì)的基礎(chǔ)上進的。原有知識與經(jīng)驗對本節(jié)課的學(xué)習(xí)有著積極的促進作用,在前后知識的比較中,學(xué)生進一步理解知識,促進認知結(jié)構(gòu)的完善,發(fā)展、比較、抽象與概括能力,進一步體驗研究函數(shù)的基本思路,而這些目標的達成要求教學(xué)必須發(fā)揮學(xué)生的主體作用,在函數(shù)圖象及其性質(zhì)的探索活動中,應(yīng)給予學(xué)生足夠的活動、探究、交流、反思的時間與空間,不以老師的講演代替學(xué)生的探索。
(二)教學(xué)目標。
基于以上的教材分析,結(jié)合新課程標準的新理念,確立如下教學(xué)目標:
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
過程與方法:
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)教學(xué)重點難點。
教學(xué)重點:一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
二、教法學(xué)法。
1、教學(xué)方法。
依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
1、自學(xué)體驗法――利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法――利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
做為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)的教案篇五
“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。教學(xué)完后,對新教材有了一些更深的認識。
精心備課。
備課過程是一種艱苦的復(fù)雜的腦力勞動過程,知識的發(fā)展、教育對象的變化、教學(xué)效益要求的提高,使作為一種藝術(shù)創(chuàng)造和再創(chuàng)造的備課是沒有止境的,一種最佳教學(xué)方案的設(shè)計和選擇,往往是難以完全使人滿意的。
二:教學(xué)內(nèi)容不好處理。
“一次函數(shù)的性質(zhì)”中無b對函數(shù)的圖象的影響,但題中有,要補講。
(2)當(dāng)k0時,y隨x的增大而______,這時函數(shù)的圖象從左到右_____.
(3)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
(4)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
待定系數(shù)法的引入上用“彈簧的長度y(厘米)”來講的,太難,要先講書上的“做一做:“已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,1)和點(1,-5),”
三:難度不好處理:
如我們在講一次函數(shù)的定義時(第一課時)補充了一個例題:已知函數(shù)y=當(dāng)m取什么值時,y是x的一次函數(shù)?當(dāng)m取什么值是,y是x的正比例函數(shù)?!?/p>
學(xué)生難以理解,我個人認為太難,超出了學(xué)生的理解能力。反而對一個具體的一次函數(shù)y=-2x+3中k,b是多少強調(diào)的不多。
滿意之筆。
一.結(jié)合生活實例,充分調(diào)動學(xué)生學(xué)習(xí)的激情,恰當(dāng)?shù)倪^渡,點燃其求知的欲望。
在本節(jié)課的引入部分采用班級里的真人真事(運用校運動會的具體事例)“在此跑步過程中涉及到哪些量?”“假定每位選手各自都是勻速直線運動的,那速度、時間、路程之間有什么關(guān)系?”“路程是時間的一次函數(shù)嗎?”等過渡性的問句既復(fù)習(xí)回顧了上節(jié)課的知識又為一次函數(shù)圖像的概念引出作了鋪墊。
二.大膽對教材作大幅度調(diào)整、修改。
對知識內(nèi)容的完整性作了補充。
(附一次函數(shù)的圖象的知識要點:一次函數(shù)幾何形狀:一條直線;一次函數(shù)圖象的畫法;一次函數(shù)圖象與坐標軸的交點坐標。)教材對“一次函數(shù)圖象的畫法”闡釋得不太完整、詳盡。學(xué)習(xí)函數(shù)的圖象需要培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,一次函數(shù)圖象又是所有函數(shù)圖象中最簡單的一種,是以后學(xué)習(xí)其他復(fù)雜函數(shù)的基礎(chǔ),所以整體全面地學(xué)習(xí)一次函數(shù)的圖象能為學(xué)生以后學(xué)習(xí)其他復(fù)雜函數(shù)提供思路樣本、節(jié)省學(xué)習(xí)時間。雖然在課后的習(xí)題與作業(yè)本中都有涉及到:當(dāng)一次函數(shù)的自變量限制在某一范圍時如何畫此一次函數(shù)的圖象,但在教材中似乎沒有涉及到此類問題,對于b班的學(xué)生需要教師對此類問題做相關(guān)示范解決。(1)求y1關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;(2)畫出上述函數(shù)的圖像。圖像還是一條直線嗎?此題為拓展知識點:當(dāng)一次函數(shù)的自變量限制在某一范圍時一次函數(shù)的圖象是一條射線或線段而特地設(shè)計的。至于如何快速地畫出射線或線段呢,讓學(xué)生討論后給出總結(jié):對于射線,取起點與另一個異于起點的任一點畫出射線;對于線段,取線段的兩個端點然后連接即可。
不足之處。
一、時間把握不準。由于我在原教材的基礎(chǔ)上加寬了知識點的面,拓展了知識點的深度,個別環(huán)節(jié)還需要小組活動或?qū)W生個別上臺動手操作,而我又想將這所有的內(nèi)容在一節(jié)課內(nèi)完成,似乎太高估了自己和學(xué)生的能力。所以我想這么多內(nèi)容可以更宜分開兩節(jié)課來上。
二、部分內(nèi)容上處理出現(xiàn)失誤:初探索一次函數(shù)y=x的畫法時,我直接自己硬性規(guī)定先取這樣五個點:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而沒有先征求學(xué)生的意見,看看他們是怎么取的,也沒有解釋為什么要取這五個點(理由應(yīng)是:這五個點分布均勻,它們的坐標較簡單,有代表性)。
在以后的教學(xué)工作中,我要再接再厲,以能更好的體現(xiàn)數(shù)學(xué)課堂教學(xué)的有效性。
函數(shù)的教案篇六
教學(xué)重點,難點。
重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).。
教學(xué)方法。
啟發(fā)研討式。
教學(xué)用具。
投影儀。
教學(xué)過程。
一。引入新課。
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個學(xué)生口答求反函數(shù)的過程:
由得.又的值域為,
所求反函數(shù)為.。
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).。
1。定義:函數(shù)的反函數(shù)叫做對數(shù)函數(shù).。
在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).。
1。作圖方法。
具體操作時,要求學(xué)生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準確(關(guān)鍵點的位置,圖像的變化趨勢等).。
(2)畫出直線.。
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出。
和的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內(nèi))如圖:
2。草圖.。
教師畫完圖后再利用投影儀將和的圖像畫在同一坐標系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)。
3。性質(zhì)。
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側(cè).。
(3)截距:令得,即在軸上的截距為1,與軸無交點即以軸為漸近線.。
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點對稱,也不關(guān)于軸對稱.。
(5)單調(diào)性:與有關(guān).當(dāng)時,在上是增函數(shù).即圖像是上升的。
當(dāng)時,在上是減函數(shù),即圖像是下降的.。
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng)時,有;當(dāng)時,有.。
最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)。
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.。
三.簡單應(yīng)用(板書)。
1。研究相關(guān)函數(shù)的性質(zhì)。
例1。求下列函數(shù)的定義域:
(1)(2)(3)。
先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.。
2。利用單調(diào)性比較大小(板書)。
例2。比較下列各組數(shù)的大小。
(1)與;(2)與;
(3)與;(4)與.。
三.鞏固練習(xí)。
練習(xí):若,求的取值范圍.。
四.小結(jié)。
五.作業(yè)略。
板書設(shè)計。
一。概念。
1.定義2.認識。
二.圖像與性質(zhì)。
1.作圖方法。
2.草圖。
圖1圖2。
3.性質(zhì)。
(1)定義域(2)值域(3)截距(4)奇偶性(5)單調(diào)性。
三.應(yīng)用。
1.相關(guān)函數(shù)的研究。
例1例2。
練習(xí)。
函數(shù)的教案篇七
啟發(fā)研討式。
投影儀。
教學(xué)過程。
一、引入新課。
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的、并由一個學(xué)生口答求反函數(shù)的過程:
由得、又的值域為,所求反函數(shù)為、
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)對數(shù)函數(shù)、
1、作圖方法。
具體操作時,要求學(xué)生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準確(關(guān)鍵點的位置,圖像的變化趨勢等)、
(2)畫出直線、
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出和的.圖像、(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內(nèi))如圖:
2、草圖。
教師畫完圖后再利用投影儀將和的圖像畫在同一坐標系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)。
3、性質(zhì)。
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側(cè)、
(3)截距:令得,即在軸上的截距為1,與軸無交點即以軸為漸近線、
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點對稱,也不關(guān)于軸對稱、
(5)單調(diào)性:與有關(guān)、當(dāng)時,在上是增函數(shù)、即圖像是上升的。
當(dāng)時,在上是減函數(shù),即圖像是下降的、
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng)時,有;當(dāng)時,有、
最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖、且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶、(特別強調(diào)它們單調(diào)性的一致性)。
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用、
三、鞏固練習(xí)。
練習(xí):若,求的取值范圍、
四、小結(jié)五、作業(yè)略。
函數(shù)的教案篇八
在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點,也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.
1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
1.教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
函數(shù)的教案篇九
2、內(nèi)容解析:教材的地位和作用:本節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動手操作接受一次函數(shù)圖象是直線這一事實,在實踐中體會兩點法的簡便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,以使學(xué)生借助直觀的圖形,生動形象的變化來發(fā)現(xiàn)兩個一次函數(shù)圖象在直角坐標系中的位置關(guān)系。培養(yǎng)學(xué)生主動學(xué)習(xí)、主動探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一次函數(shù)性質(zhì)作準備。
1、教學(xué)目標的確定。
教學(xué)目標是教學(xué)的.出發(fā)點和歸宿。因此,我根據(jù)新課標的知識、能力和德育目標的要求,以學(xué)生的認知點,心理特點和本課的特點來制定教學(xué)目標。
知識目標。
(1)能用兩點法畫出一次函數(shù)的圖象。
(2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響。
能力目標。
(1)通過操作、觀察,培養(yǎng)學(xué)生動手和歸納的能力。
(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
情感目標。
(1)通過動手操作,觀察探索一次函數(shù)的特征,體驗數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。
(2)讓學(xué)生通過直觀感知、動手操作去經(jīng)歷、體會規(guī)律形成的過程。
2、教學(xué)重點、難點。
用兩點法畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點。直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響,是本節(jié)課的難點。關(guān)鍵是通過學(xué)生的直觀感知、動手操作、合作交流歸納其規(guī)律。
1、由用描點法畫函數(shù)的圖象的認識,學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合兩點確定一條直線,學(xué)生能畫出一次函數(shù)圖象。
2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。
3、抓住初中學(xué)生的心理特征,運用直觀生動的形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
恰當(dāng)運用現(xiàn)代教育技術(shù)手段,采用自主探究合作交流式教學(xué),讓學(xué)生動手操作,主動去探索,小組合作交流。而互動式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果。
(一)、設(shè)疑,導(dǎo)入新課(2分鐘)。
通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?一次函數(shù)的圖象。(板書課題)。
函數(shù)的教案篇十
讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
:各種隱含條件的挖掘。
:引導(dǎo)發(fā)現(xiàn)法。
(一)診斷補償,情景引入:
(先讓學(xué)生復(fù)習(xí),然后提問,并做進一步診斷)。
(二)問題導(dǎo)航,探究釋疑:
(三)精講提煉,揭示本質(zhì):
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
解由題意,得點b的坐標為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標代入,得所以因此,函數(shù)關(guān)系式是。
例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b=-1。
(2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設(shè)二此函數(shù)的關(guān)系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。
(四)題組訓(xùn)練,拓展遷移:
1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
函數(shù)的教案篇十一
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標決定,即角的終邊過點。
8、時,。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
函數(shù)的教案篇十二
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。
過程與方法。
1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
函數(shù)的教案篇十三
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學(xué)生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.
誘導(dǎo)公式(三)、(四)
給出本節(jié)課的課題
三角函數(shù)誘導(dǎo)公式
標題的后出,讓學(xué)生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)
設(shè)計意圖
簡便記憶公式.
求下列三角函數(shù)的值:(1).sin( ); (2). co.
設(shè)計意圖
本練習(xí)的設(shè)置重點體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會靈活運用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負角”化為“正角”是針對具體負角而言的.
學(xué)生練習(xí)
化簡: .
設(shè)計意圖
重點加強對三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
1.小結(jié)使用誘導(dǎo)公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學(xué)會”學(xué)習(xí)的習(xí)慣.
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設(shè)計意圖
加強學(xué)生對三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
八.課后反思
對本節(jié)內(nèi)容在進行教學(xué)設(shè)計之前,本人反復(fù)閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學(xué)生的互動交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設(shè)計中所預(yù)想的目標。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。
在以后的教學(xué)中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計課堂教學(xué),關(guān)注學(xué)生個性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
函數(shù)的教案篇十四
通過對這節(jié)課的教學(xué)研究,我深刻地認識到新課程背景下的數(shù)學(xué)課堂教學(xué)應(yīng)注意:
1、教師要“放得開”,做一個邊緣人。我們應(yīng)該充分相信學(xué)生,給學(xué)生成長的機會和空間。不再搞“包辦代替”,不能急性子。凡是學(xué)生能做的,就應(yīng)該讓他們自主去做;凡是學(xué)生之間能合作完成的,就應(yīng)該讓他們自主探究。給學(xué)生一滴水的機會,也許他會收獲一片海洋。
2、要做到“問題引領(lǐng)”,用問題牽引學(xué)習(xí)。本節(jié)課的設(shè)計給予學(xué)生的基礎(chǔ),設(shè)計了多個學(xué)生容易解決的問題串,這樣,能夠在循序漸進中學(xué)到知識。
3、要創(chuàng)造性地使用教材。教學(xué)過程中,不應(yīng)局限于教材,而應(yīng)充分利用教材這個平臺,伸向與教材有關(guān)的領(lǐng)域。數(shù)學(xué)是思維的體操,因此,若能對數(shù)學(xué)教材科學(xué)安排,對問題妙引導(dǎo),有意識地引導(dǎo)學(xué)生有意識地主動學(xué)習(xí)更多更全面的數(shù)學(xué)知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。
4、注重探究,體驗知識的形成過程。數(shù)學(xué)教學(xué)從本質(zhì)上講,是教師和學(xué)生以課堂為主渠道的交流活動,是教師和學(xué)生在某種教學(xué)情境中的探究活動。這節(jié)課教師本著“讓學(xué)生充分經(jīng)歷知識的形成、發(fā)展和應(yīng)用過程,充分體驗數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造歷程”的教學(xué)理念,對教學(xué)過程和教學(xué)手段作了充分的準備。整節(jié)課學(xué)生在教師的引導(dǎo)下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學(xué)學(xué)習(xí)的樂趣,教師的主導(dǎo)作用和學(xué)生的主體地位都得到了很好地體現(xiàn)。
總之,我們的教學(xué)工作是一項內(nèi)涵豐富的系統(tǒng)工程。教學(xué)中用問題引領(lǐng)學(xué)生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復(fù)雜的課題?!氨鶅鋈撸且蝗罩?,在教學(xué)中必須循序漸進,長期實踐,與時俱進,爭取做教學(xué)改革的有心人,只有這樣才能在教學(xué)研究工作中有所作為。因此,在實際教學(xué)中,我們應(yīng)時刻以學(xué)生為中心,充分給予學(xué)生成長的時間,鼓勵學(xué)生自主探究,采用適時激勵與點撥的方法使學(xué)生的思維活躍起來,讓課堂真正成為學(xué)生學(xué)習(xí)、發(fā)現(xiàn)的樂園。
函數(shù)的教案篇十五
2.通過對抽象符號的認識與使用,使學(xué)生在符號表示方面的能力得以提高.。
難點:重點是在映射的基礎(chǔ)上理解的概念;
難點是對抽象符號的認識與使用.。
投影儀。
自學(xué)研究與啟發(fā)討論式.。
(要求學(xué)生盡量用自己的話描述初中的定義,并試舉出各類學(xué)過的例子)。
提問1.是嗎?
(由學(xué)生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做.)。
現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)。
提問2.新的的定義是什么?能否用最簡單的語言來概括一下.。
(板書)2.2。
一、的概念。
問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)。
引導(dǎo)學(xué)生發(fā)現(xiàn),是特殊的映射,特殊在集合a,b必是非空的數(shù)集.。
2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)。
然后讓學(xué)生試回答剛才關(guān)于是不是的問題,要求從映射的角度解釋.。
此時學(xué)生可以清楚的看到滿足映射觀點下的定義,故是一個,這樣解釋就很自然.。
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個?
從映射角度看可以是其中定義域是,值域是.。
3.的三要素及其作用(板書)。
例1以下關(guān)系式表示嗎?為什么?
(1);(2).。
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示.。
(2)由有意義得,解得.定義域為,值域為.。
由以上兩題可以看出三要素的作用。
(1)判斷一個關(guān)系是否存在.(板書)。
例2下列各中,哪一個與是同一個.。
(1);(2)(3);(4).。
解:先認清,它是(定義域)到(值域)的映射,其中。
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.。
(2)判斷兩個是否相同.(板書)。
4.對符號的理解(板書)。
例3已知試求(板書)。
分析:首先讓學(xué)生認清的含義,要求學(xué)生能從變量觀點和映射觀點解釋,再進行計算.。
含義1:當(dāng)自變量取3時,對應(yīng)的值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.。
計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.。
1.的定義。
2.對三要素的認識。
3.對符號的認識。
五、
2.2例1.例3.。
一.的概念。
1.定義。
2.本質(zhì)例2.小結(jié):
3.三要素的認識及作用。
4.對符號的理解。
探究活動。
答案:
函數(shù)的教案篇十六
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究.
(2)本節(jié)的教學(xué)重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學(xué)中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當(dāng)之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導(dǎo)再列表計算,描點得圖象.
函數(shù)的教案篇十七
(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)
提問1.是函數(shù)嗎?
(由學(xué)生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數(shù)
一、函數(shù)的概念
問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
此時學(xué)生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書)
以下關(guān)系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關(guān)系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數(shù)是否相同.(板書)
4.對函數(shù)符號的理解(板書)
已知函數(shù)試求(板書)
分析:首先讓學(xué)生認清的含義,要求學(xué)生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當(dāng)自變量取3時,對應(yīng)的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
計算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
三、小結(jié)
1.函數(shù)的定義
2.對函數(shù)三要素的認識
3.對函數(shù)符號的認識
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質(zhì)例2.小結(jié):
3.函數(shù)三要素的認識及作用
4.對函數(shù)符號的理解
答案:
函數(shù)的教案篇十八
我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運用新課標的理念指導(dǎo)本節(jié)課的教學(xué)。新課標指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。
一、教材分析。
1、教材的地位和作用:函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
2、教學(xué)的重點和難點:根據(jù)這一節(jié)課的內(nèi)容特點以及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
二、教學(xué)目標分析。
基于對教材的理解和分析,我制定了以下的教學(xué)目標。
3、情感目標(可持續(xù)性目標):通過學(xué)習(xí),使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
三、教法學(xué)法分析。
1、教學(xué)策略:首先從實際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
2、教學(xué):貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況,本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
函數(shù)的教案篇十九
1.使學(xué)生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學(xué)生認識到數(shù)學(xué)的應(yīng)用價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.
函數(shù)的教案篇二十
(二)解析:本節(jié)課要學(xué)的內(nèi)容指的是會判定函數(shù)在某個區(qū)間上的單調(diào)性、會確定函數(shù)的單調(diào)區(qū)間、能證明函數(shù)的單調(diào)性,其關(guān)鍵是利用形式化的定義處理有關(guān)的單調(diào)性問題,理解它關(guān)鍵就是要學(xué)會轉(zhuǎn)換式子。學(xué)生已經(jīng)掌握了函數(shù)單調(diào)性的定義、代數(shù)式的變換、函數(shù)的概念等知識,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的應(yīng)用。教學(xué)的重點是應(yīng)用定義證明函數(shù)在某個區(qū)間上的單調(diào)性,解決重點的關(guān)鍵是嚴格按過程進行證明。
二、教學(xué)目標及解析。
(一)教學(xué)目標:
掌握用定義證明函數(shù)單調(diào)性的步驟,會求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識解決問題的能力。
(二)解析:
會證明就是指會利用三步曲證明函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間就是指會利用函數(shù)的圖象寫出單調(diào)增區(qū)間或減區(qū)間;應(yīng)用知識解決問題就是指能利用函數(shù)單調(diào)性的意義去求參變量的取值情況或轉(zhuǎn)化成熟悉的問題。
三、問題診斷分析。
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是如何才能準確確定的符號,產(chǎn)生這一問題的原因是學(xué)生對代數(shù)式的恒等變換不熟練。要解決這一問題,就是要根據(jù)學(xué)生的實際情況進行知識補習(xí),特別是因式分解、二次根式中的分母有理化的補習(xí)。
在本節(jié)課的教學(xué)中,準備使用(),因為使用(),有利于()。
【本文地址:http://aiweibaby.com/zuowen/17235988.html】