教育總結(jié)是對(duì)教育教學(xué)工作進(jìn)行評(píng)估和改進(jìn)的重要方法,能夠提高教育質(zhì)量。總結(jié)要全面地反映一段時(shí)間內(nèi)的工作或?qū)W習(xí)情況,盡量避免主觀性和片面性的描述。如果你對(duì)寫總結(jié)感到困惑,不妨參考一下下面的范文,它們可以為你提供一些建議和思路。
人工神經(jīng)網(wǎng)絡(luò)論文篇一
關(guān)于人工神經(jīng)網(wǎng)絡(luò),到目前為止還沒有一個(gè)得到廣泛認(rèn)可的統(tǒng)一定義,綜合各專家學(xué)者的觀點(diǎn)可以將人工神經(jīng)網(wǎng)絡(luò)簡單的概括為是模仿人腦的結(jié)構(gòu)和功能的計(jì)算機(jī)信息處理系統(tǒng)[1]。人工神經(jīng)網(wǎng)絡(luò)具有自身的發(fā)展特性,其具有很強(qiáng)的并行結(jié)構(gòu)以及并行處理的能力,在實(shí)時(shí)和動(dòng)態(tài)控制時(shí)能夠起到很好的作用;人工神經(jīng)網(wǎng)絡(luò)具有非線性映射的特性,對(duì)處理非線性控制的問題時(shí)能給予一定的幫助;人工神經(jīng)網(wǎng)絡(luò)可以通過訓(xùn)練掌握數(shù)據(jù)歸納和處理的能力,因此在數(shù)學(xué)模型等難以處理時(shí)對(duì)問題進(jìn)行解決;人工神經(jīng)網(wǎng)絡(luò)的適應(yīng)性和集成性很強(qiáng),能夠適應(yīng)不同規(guī)模的信息處理和大規(guī)模集成數(shù)據(jù)的處理與控制;人工神經(jīng)網(wǎng)絡(luò)不但在軟件技術(shù)上比較成熟,而且近年來在硬件方面也得到了較大發(fā)展,提高了人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)的信息處理能力。
人工神經(jīng)網(wǎng)絡(luò)論文篇二
[6].白云樸;環(huán)境規(guī)制背景下資源型產(chǎn)業(yè)發(fā)展問題研究[d].西北大學(xué).2013。
[10].李輝;廣東省社會(huì)經(jīng)濟(jì)與資源環(huán)境協(xié)調(diào)發(fā)展研究[d].吉林大學(xué).2014。
[16].包紅梅;生態(tài)社會(huì)主義環(huán)境危機(jī)理論研究[d].內(nèi)蒙古大學(xué).2005。
[17].王雪;環(huán)境科學(xué)視角的綠黨發(fā)展史研究[d].東北大學(xué).2013。
[20].周雷;我國生態(tài)環(huán)境稅收政策初探[d].吉林大學(xué).2006。
[21].高曉紅;海南生態(tài)省建設(shè)的環(huán)境政策研究[d].中國海洋大學(xué).2012。
[22].張軍馳;西部地區(qū)生態(tài)環(huán)境治理政策研究[d].西北農(nóng)林科技大學(xué).2012。
[23].呂闖;建國初期我國生態(tài)環(huán)境相關(guān)政策研究[d].海南師范大學(xué).2014。
[24].王芳芳;論生態(tài)女性主義的環(huán)境正義思想[d].山西大學(xué).2012。
[26].趙偉;社會(huì)主義新農(nóng)村生態(tài)環(huán)境建設(shè)研究[d].山東輕工業(yè)學(xué)院.2011。
[28].劉溪;馬克思主義生態(tài)觀與當(dāng)前生態(tài)環(huán)境問題研究[d].安徽大學(xué).2011。
[29].邵琛霞;小城鎮(zhèn)生態(tài)環(huán)境保護(hù)若干政策問題研究[d].武漢大學(xué).2004。
人工神經(jīng)網(wǎng)絡(luò)論文篇三
在互聯(lián)網(wǎng)時(shí)代背景下,計(jì)算機(jī)技術(shù)得到快速發(fā)展,資源的互通共享也為人們的生產(chǎn)生活帶來了極大便利。但在計(jì)算機(jī)網(wǎng)絡(luò)的使用過程中,難以避免出現(xiàn)病毒、漏洞、電腦高手等問題,影響計(jì)算機(jī)網(wǎng)絡(luò)的安全性,進(jìn)而造成用戶的損失,阻礙計(jì)算機(jī)網(wǎng)絡(luò)的長遠(yuǎn)發(fā)展。傳統(tǒng)的計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)方式采用線性評(píng)價(jià)模式,操作復(fù)雜但精確度較低,難以順應(yīng)網(wǎng)絡(luò)時(shí)代發(fā)展的潮流。專家評(píng)價(jià)模式則易受專家的業(yè)務(wù)水平和工作方式影響,難以有效驗(yàn)證計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)結(jié)果。神經(jīng)網(wǎng)絡(luò)屬于新型評(píng)價(jià)方式,通過神經(jīng)元對(duì)計(jì)算機(jī)網(wǎng)絡(luò)進(jìn)行非線性評(píng)價(jià),具有效率和精度高的特點(diǎn)。本文對(duì)計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)中神經(jīng)網(wǎng)絡(luò)的應(yīng)用展開研究,旨在通過有效使用新型評(píng)價(jià)模式全面維護(hù)和控制計(jì)算機(jī)網(wǎng)絡(luò)安全,達(dá)到最佳的網(wǎng)絡(luò)安全評(píng)價(jià)效果,為社會(huì)網(wǎng)絡(luò)安全作出貢獻(xiàn)。
1計(jì)算機(jī)網(wǎng)絡(luò)安全概述。
計(jì)算機(jī)網(wǎng)絡(luò)安全是指在計(jì)算機(jī)網(wǎng)絡(luò)環(huán)境中,網(wǎng)絡(luò)系統(tǒng)中數(shù)據(jù)受先進(jìn)技術(shù)和管理措施的保護(hù),即使外界因素的干擾,其保密性、可使用性依然可以不受影響而正常工作。計(jì)算機(jī)網(wǎng)絡(luò)安全涉及面廣,行業(yè)覆蓋面大,因此,需要受到高度重視。計(jì)算機(jī)網(wǎng)絡(luò)安全研究包括網(wǎng)絡(luò)信息的完整性、可使用性等內(nèi)容,通過網(wǎng)絡(luò)安全管理者的信息讀取、操作等內(nèi)容達(dá)到保護(hù)網(wǎng)絡(luò)安全的目的。計(jì)算機(jī)網(wǎng)絡(luò)的安全評(píng)價(jià)結(jié)果與其影響因素之間具有非線性關(guān)系,需要采用先進(jìn)的科學(xué)技術(shù)和智能管理系統(tǒng)進(jìn)行安全保護(hù)工作。專家評(píng)價(jià)模式使用灰色模型、故障分析法等方式規(guī)避網(wǎng)絡(luò)風(fēng)險(xiǎn),但此類傳統(tǒng)的網(wǎng)絡(luò)評(píng)價(jià)模式具有操作復(fù)雜、精確度不高的劣勢(shì),在現(xiàn)代化信息時(shí)代將被新型技術(shù)所取代。隨著計(jì)算機(jī)技術(shù)的高速發(fā)展,局域網(wǎng)被拓展,全球范圍內(nèi)信息得以共享,計(jì)算機(jī)網(wǎng)絡(luò)能力全面提高,難以避免的計(jì)算機(jī)網(wǎng)絡(luò)安全問題隨即出現(xiàn)。計(jì)算機(jī)網(wǎng)絡(luò)安全主要包括物理安全和邏輯安全兩方面內(nèi)容。其中,物理安全是指通過物理技術(shù)保護(hù)計(jì)算機(jī)系統(tǒng)等設(shè)備,避免發(fā)生破壞、丟失現(xiàn)象;邏輯安全是指保護(hù)計(jì)算機(jī)中的數(shù)據(jù)安全。計(jì)算機(jī)網(wǎng)絡(luò)的自由性、開放性特點(diǎn)導(dǎo)致其極易受到攻擊,例如:計(jì)算機(jī)軟硬件漏洞、傳輸線路攻擊等。計(jì)算機(jī)網(wǎng)絡(luò)安全問題需要受到國際關(guān)注,無論是本地網(wǎng)絡(luò)用戶還是其他國家用戶都將面臨攻擊風(fēng)險(xiǎn),提高對(duì)計(jì)算機(jī)網(wǎng)絡(luò)安全的關(guān)注度具有重要的現(xiàn)實(shí)意義。
神經(jīng)網(wǎng)絡(luò)通過模仿動(dòng)物的神經(jīng)系統(tǒng)形成人工智能系統(tǒng),并通過分析處理信息作用于計(jì)算機(jī)網(wǎng)絡(luò)中?;谒惴〝?shù)學(xué)模型,神經(jīng)網(wǎng)絡(luò)通過調(diào)節(jié)網(wǎng)絡(luò)節(jié)點(diǎn)之間的內(nèi)部關(guān)系發(fā)揮出應(yīng)用價(jià)值。非常定性、非局限性、非線性是神經(jīng)網(wǎng)絡(luò)系統(tǒng)具備的基本特征,此類特征使得神經(jīng)網(wǎng)絡(luò)在計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)中產(chǎn)生了一定優(yōu)勢(shì)。神經(jīng)網(wǎng)絡(luò)系統(tǒng)的自主學(xué)習(xí)性能較強(qiáng),系統(tǒng)可以通過自動(dòng)識(shí)別信息,總結(jié)出信息存在的一定規(guī)律,便于后續(xù)使用。用戶輸入相關(guān)信息后,神經(jīng)網(wǎng)絡(luò)系統(tǒng)可以基于信息規(guī)律展開自動(dòng)運(yùn)行,識(shí)別信息并進(jìn)行有效預(yù)測(cè),提高了工作效率。將市場、經(jīng)濟(jì)等數(shù)據(jù)信息輸入系統(tǒng),神經(jīng)網(wǎng)絡(luò)系統(tǒng)可以做出相關(guān)的預(yù)測(cè)分析工作,提升了預(yù)測(cè)結(jié)果的準(zhǔn)確性,有利于促進(jìn)社會(huì)的科技化發(fā)展;神經(jīng)網(wǎng)絡(luò)系統(tǒng)的聯(lián)系存儲(chǔ)功能在信息查找、儲(chǔ)存操作中發(fā)揮中重要作用,用戶輸入相關(guān)信息后,神經(jīng)網(wǎng)絡(luò)系統(tǒng)通過網(wǎng)絡(luò)節(jié)點(diǎn)的聯(lián)系快速獲取信息;自我尋找優(yōu)化解功能是神經(jīng)網(wǎng)絡(luò)在高速運(yùn)轉(zhuǎn)過程中的重要效能,其有利于提高工作效率,能夠最快速度幫助用戶解決難題。神經(jīng)網(wǎng)絡(luò)的有點(diǎn)為其應(yīng)用于計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)中奠定了良好基礎(chǔ)。
人工神經(jīng)網(wǎng)絡(luò)論文篇四
人工神經(jīng)網(wǎng)絡(luò)是邊緣性交叉科學(xué),它涉及計(jì)算機(jī)、人工智能、自動(dòng)化、生理學(xué)等多個(gè)學(xué)科領(lǐng)域,研究它的發(fā)展具有非常重要意義。針對(duì)神經(jīng)網(wǎng)絡(luò)的社會(huì)需求以及存在的問題,今后神經(jīng)網(wǎng)絡(luò)的研究趨勢(shì)主要側(cè)重以下幾個(gè)方面。
4.1增強(qiáng)對(duì)智能和機(jī)器關(guān)系問題的認(rèn)識(shí)。
人腦是一個(gè)結(jié)構(gòu)異常復(fù)雜的信息系統(tǒng),我們所知道的唯一智能系統(tǒng),隨著信息論、控制論、計(jì)算機(jī)科學(xué)、生命科學(xué)的發(fā)展,人們?cè)絹碓襟@異于大腦的奇妙。對(duì)人腦智能化實(shí)現(xiàn)的研究,是神經(jīng)網(wǎng)絡(luò)研究今后的需要增強(qiáng)的地發(fā)展方向。
4.2發(fā)展神經(jīng)計(jì)算和進(jìn)化計(jì)算的理論及應(yīng)用。
利用神經(jīng)科學(xué)理論的研究成果,用數(shù)理方法探索智能水平更高的人工神經(jīng)網(wǎng)絡(luò)模型,深入研究網(wǎng)絡(luò)的算法和性能,使離散符號(hào)計(jì)算、神經(jīng)計(jì)算和進(jìn)化計(jì)算相互促進(jìn),開發(fā)新的網(wǎng)絡(luò)數(shù)理理論。
4.3擴(kuò)大神經(jīng)元芯片和神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的作用。
神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)體現(xiàn)了結(jié)構(gòu)和算法的統(tǒng)一,是硬件和軟件的混合體,神經(jīng)元矩陣即是如此。人工神經(jīng)網(wǎng)絡(luò)既可以用傳統(tǒng)計(jì)算機(jī)來模擬,也可以用集成電路芯片組成神經(jīng)計(jì)算機(jī),甚至還可以生物芯片方式實(shí)現(xiàn),因此研制電子神經(jīng)網(wǎng)絡(luò)計(jì)算機(jī)潛力巨大。如何讓傳統(tǒng)的計(jì)算機(jī)、人工智能技術(shù)和神經(jīng)網(wǎng)絡(luò)計(jì)算機(jī)相融合也是前沿課題,具有十分誘人的前景。
4.4促進(jìn)信息科學(xué)和生命科學(xué)的相互融合。
信息科學(xué)與生命科學(xué)的相互交叉、相互促進(jìn)、相互滲透是現(xiàn)代科學(xué)的一個(gè)顯著特點(diǎn)。神經(jīng)網(wǎng)絡(luò)與各種智能處理方法有機(jī)結(jié)合具有很大的發(fā)展前景,如與專家系統(tǒng)、模糊邏輯、遺傳算法、小波分析等相結(jié)合,取長補(bǔ)短,可以獲得更好的應(yīng)用效果。
參考文獻(xiàn)。
[1]鐘珞.饒文碧.鄒承明著.人工神經(jīng)網(wǎng)絡(luò)及其融合應(yīng)用技術(shù).科學(xué)出版社.
人工神經(jīng)網(wǎng)絡(luò)論文篇五
摘要:軟件需求分析不僅僅是為了讓開發(fā)者滿足用戶要求,而且還可以幫助用戶了解軟件的性能和功能,具有一舉兩得的效果,但是如果軟件需求不符合實(shí)際需求,就會(huì)出現(xiàn)風(fēng)險(xiǎn),導(dǎo)致返工。在bp神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上,我們建立了軟件需求分析風(fēng)險(xiǎn)評(píng)估模型,以減少軟件開發(fā)的失敗率,規(guī)避因軟件需求分析失誤而帶來的實(shí)際存在的或潛在的風(fēng)險(xiǎn)。
關(guān)鍵詞:風(fēng)險(xiǎn);軟件需求;bp神經(jīng)網(wǎng)絡(luò);研究;分析。
軟件開發(fā)過程中,需求分析是一個(gè)關(guān)鍵性的階段。導(dǎo)致它失敗的原因有很多,例如開發(fā)者和用戶之間的溝通障礙、軟件本身的隱含性、需求信息的不對(duì)稱等等。這些問題導(dǎo)致的返工,增加了開發(fā)的成本,也損壞了企業(yè)形象,更可能流失掉部分用戶。因此,我們必須對(duì)軟件需求分析進(jìn)行風(fēng)險(xiǎn)評(píng)估管理,把負(fù)面影響降到最低。現(xiàn)代商業(yè)發(fā)展中,各企業(yè)和企業(yè)之間的競爭日趨激烈,掌握最新的技術(shù),對(duì)技術(shù)進(jìn)行創(chuàng)新,才是企業(yè)在行業(yè)內(nèi)立足腳跟,獲得更加長遠(yuǎn)發(fā)展的方法,因此要想牢牢地把握企業(yè)的運(yùn)命就需要我們保持對(duì)技術(shù)創(chuàng)新的熱情,并在這條道路上樂此不疲。21世紀(jì),只有掌握了最新和最具有創(chuàng)造性的技術(shù),才能贏的最后的勝利,本文把bp網(wǎng)絡(luò)與軟件需求分析風(fēng)險(xiǎn)評(píng)估模型相結(jié)合,具有十分重要的意義。
bp神經(jīng)網(wǎng)絡(luò)是開發(fā)者使用最多的神經(jīng)網(wǎng)絡(luò)之一,它具有算法簡單、極強(qiáng)的魯棒性、收斂速度極快等優(yōu)點(diǎn)。最重要的一點(diǎn)是能夠最大限度的接近其真實(shí)系統(tǒng),非常適合于線性的、不確定的、模糊的軟件風(fēng)險(xiǎn)數(shù)據(jù)。bp算法是一種用于前向多層神經(jīng)網(wǎng)絡(luò)的的反傳學(xué)習(xí)算法。采用bp算法的數(shù)層感知器神經(jīng)網(wǎng)絡(luò)模型,它的基本思想是,學(xué)習(xí)過程由信號(hào)的正向傳播和誤差的反向傳播兩個(gè)過程組成。模糊理論采用模糊數(shù)學(xué)的方法,通過抽象思維,對(duì)處于多種因素作用下的事物做出總體評(píng)價(jià)。它的兩大主要特征是:第一,結(jié)果清晰;第二,系統(tǒng)性強(qiáng),這非常適合于各種非確定性問題的解決。
2軟件需求分析風(fēng)險(xiǎn)評(píng)估模型。
開發(fā)過程中,了解軟件需求是很重要的。軟件開發(fā)主要是依據(jù)需求的不同而設(shè)計(jì)出的產(chǎn)品。它包括了業(yè)務(wù)需求(組織和客戶高層次的目標(biāo))、用戶需求(用戶要求必須具備的需求)、功能需求(用戶可以通過完成任務(wù)滿足業(yè)務(wù)需求的產(chǎn)品中必須體現(xiàn)的軟件功能)。各種不同的需求都以不同的角度來呈現(xiàn),需要進(jìn)行多方位的分析方可得出準(zhǔn)確的結(jié)論。軟件需求分析就是對(duì)用戶所需軟件應(yīng)具備的屬性進(jìn)行分析,滿足用戶的真正需求。在完成軟件需求分析后,我們要能得出用戶所需的軟件系統(tǒng)要能夠做到哪些功能,對(duì)此還要有詳細(xì)準(zhǔn)確的說明書,也就是用戶的使用說明書,讓他們更快的了解產(chǎn)品。優(yōu)秀的需求具有以下特點(diǎn):完整性、準(zhǔn)確性、可行性、必要性、無歧義性和可行性。軟件需求分析風(fēng)險(xiǎn)是指由于多方面的影響,如用戶參與度、用戶需求的拓展變化、多角度的考慮、設(shè)計(jì)的精準(zhǔn)度和用戶與開發(fā)者的充分溝通等等,而造成需求分析的不準(zhǔn)確使得用戶的軟件需求得不到滿足。該風(fēng)險(xiǎn)評(píng)估模型主要是為了降低軟件需求分析中存在的風(fēng)險(xiǎn),從而使得評(píng)估需求分析更具加有效和更易操作。
3一種基于bp神經(jīng)網(wǎng)絡(luò)的軟件需求分析風(fēng)險(xiǎn)評(píng)估模型。
本文把bp神經(jīng)網(wǎng)絡(luò)和模糊理論加入到軟件需求分析風(fēng)險(xiǎn)評(píng)估模型中,利用bp神經(jīng)網(wǎng)絡(luò)的非線性映射屬性和模糊理論的超強(qiáng)表達(dá)能力與被理解力,幫助提高風(fēng)險(xiǎn)評(píng)估的有效性和預(yù)測(cè)性。軟件需求分析風(fēng)險(xiǎn)的評(píng)估模型包括風(fēng)險(xiǎn)識(shí)別、風(fēng)險(xiǎn)分析、風(fēng)險(xiǎn)評(píng)估三個(gè)模塊。風(fēng)險(xiǎn)識(shí)別的主要目的是考察研究軟件需求分析階段具體的情況,識(shí)別并記錄該階段存在的或潛在的風(fēng)險(xiǎn),輸入來源是專家的經(jīng)驗(yàn)分析和歷史風(fēng)險(xiǎn)數(shù)據(jù)庫。
一般步驟包括:
a:找出軟件需求分析風(fēng)險(xiǎn)指標(biāo);
b:搜索歷史數(shù)據(jù)庫,列出存在的數(shù)據(jù)庫中的歷史案例;
c:通過專家分析,列出具有風(fēng)險(xiǎn)等級(jí)的列表;
d:將確定了的風(fēng)險(xiǎn)列表提交數(shù)據(jù)庫并更新。風(fēng)險(xiǎn)分析是細(xì)化第一階段的風(fēng)險(xiǎn),分析其產(chǎn)生的影響和等級(jí),找出各指標(biāo)與風(fēng)險(xiǎn)級(jí)別之間的線性關(guān)系亦或非線性關(guān)系。本文引入bp神經(jīng)網(wǎng)絡(luò)和模糊理論,利用bp神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)風(fēng)險(xiǎn)評(píng)估指標(biāo)和風(fēng)險(xiǎn)級(jí)別之間的非線性映射關(guān)系,還利用模糊理論的超強(qiáng)表達(dá)能力和容易理解的屬性,提高整個(gè)風(fēng)險(xiǎn)評(píng)估模型的學(xué)習(xí)能力和表達(dá)能力,得出更符合實(shí)際的評(píng)估報(bào)告。
主要的方法包括:
a:揭示原因和結(jié)果之間的聯(lián)系,追根溯源;
b:建立模型進(jìn)行認(rèn)識(shí)和理解;
c:通過嘗試各種組合找出導(dǎo)致失敗的因素。風(fēng)險(xiǎn)評(píng)估需最后明確所有存在的風(fēng)險(xiǎn)和它們的等級(jí),給予開發(fā)者一個(gè)詳細(xì)的報(bào)告。本階段只要利用bp神經(jīng)網(wǎng)絡(luò)的`輸入層、輸出層、隱含層數(shù)、隱含層節(jié)點(diǎn)數(shù)。輸入層節(jié)點(diǎn)是經(jīng)過模糊預(yù)處理的17個(gè)需求分析風(fēng)險(xiǎn)評(píng)估指標(biāo);輸出層節(jié)點(diǎn)是需求分析風(fēng)險(xiǎn)等級(jí);隱含層數(shù)越多性能越高誤差越低;隱含節(jié)點(diǎn)越多,網(wǎng)絡(luò)功能越強(qiáng)大,但是過多則會(huì)使網(wǎng)絡(luò)功能減弱。
在bp神經(jīng)網(wǎng)絡(luò)基礎(chǔ)上,建立的軟件需求分析風(fēng)險(xiǎn)評(píng)估模型,它操作的流程大致是三個(gè)方向。首先,識(shí)別軟件需求分析階段存在的、潛在的風(fēng)險(xiǎn);然后,利用bp神經(jīng)網(wǎng)絡(luò)和模糊理論的特有屬性、眾多優(yōu)點(diǎn)進(jìn)行分析,通過歷史數(shù)據(jù)庫,專家知識(shí)、專家討論,列出風(fēng)險(xiǎn)表格;最后,對(duì)風(fēng)險(xiǎn)進(jìn)行最后的評(píng)估,從而有效預(yù)測(cè)軟件開發(fā)過程中所遇到的風(fēng)險(xiǎn),并且進(jìn)行規(guī)避。
4結(jié)束語。
隨著經(jīng)濟(jì)的高速發(fā)展,網(wǎng)絡(luò)軟件也成為人們工作生活中一個(gè)非常重要的工具。軟件需求的增多帶來了很多的問題,軟件開發(fā)的過程充滿了阻礙,軟件需求的滿意度也在日漸降低。因此,提高軟件開發(fā)的速度、保證開發(fā)軟件的質(zhì)量,降低風(fēng)險(xiǎn)、減少開發(fā)成本、滿足用戶真正的需求等等,對(duì)軟件需求分析風(fēng)險(xiǎn)進(jìn)行評(píng)估,建立軟件需求分析風(fēng)險(xiǎn)評(píng)估模型,是一件非常值得研究和實(shí)施的事情。本文研究的內(nèi)容不僅僅達(dá)到了需求分析的目的,提出了新的思維方式和參考方向,而且還能更有效的預(yù)測(cè)軟件需求分析風(fēng)險(xiǎn),真正滿足用戶的軟件需求?;痦?xiàng)目:吉林省教育廳“十二五”科學(xué)技術(shù)研究項(xiàng)目“基于ahp和群決策向量分析高校干部綜合測(cè)評(píng)方法和系統(tǒng)實(shí)現(xiàn)”(吉教科合字第2013402號(hào));吉林省教育科學(xué)“十二五”規(guī)劃課題“構(gòu)建以學(xué)習(xí)者為主體的遠(yuǎn)程教育支持服務(wù)體系的研究”。
參考文獻(xiàn):
人工神經(jīng)網(wǎng)絡(luò)論文篇六
摘要隨著科學(xué)技術(shù)的發(fā)展,人工神經(jīng)網(wǎng)絡(luò)技術(shù)得到了空前的發(fā)展,并且在諸多領(lǐng)域得到了廣泛的應(yīng)用,為人工智能化的發(fā)展提供了強(qiáng)大的動(dòng)力。人工神經(jīng)網(wǎng)絡(luò)的發(fā)展經(jīng)歷了不同的階段,是人工智能的重要組成部分,并且在發(fā)展過程中形成了自身獨(dú)特的特點(diǎn)。文章對(duì)人工神經(jīng)網(wǎng)絡(luò)的發(fā)展歷程進(jìn)行回顧,并對(duì)其在各個(gè)領(lǐng)域的應(yīng)用情況進(jìn)行探討。
隨著科學(xué)技術(shù)的發(fā)展,各個(gè)行業(yè)和領(lǐng)域都在進(jìn)行人工智能化的研究工作,已經(jīng)成為專家學(xué)者研究的熱點(diǎn)。人工神經(jīng)網(wǎng)絡(luò)就是在人工智能基礎(chǔ)上發(fā)展而來的重要分支,對(duì)人工智能的發(fā)展具有重要的促進(jìn)作用。人工神經(jīng)網(wǎng)絡(luò)從形成之初發(fā)展至今,經(jīng)歷了不同的發(fā)展階段,并且在經(jīng)濟(jì)、生物、醫(yī)學(xué)等領(lǐng)域得到了廣泛的應(yīng)用,解決了許多技術(shù)上的難題。
人工神經(jīng)網(wǎng)絡(luò)論文篇七
在20世紀(jì)40年代,生物學(xué)家mcculloch與數(shù)學(xué)家pitts共同發(fā)表文章,第一次提出了關(guān)于神經(jīng)元的模型m-p模型,這一理論的提出為神經(jīng)網(wǎng)絡(luò)模型的研究和開發(fā)奠定了基礎(chǔ),在此基礎(chǔ)上人工神經(jīng)網(wǎng)絡(luò)研究逐漸展開。1951年,心理學(xué)家hebb提出了關(guān)于連接權(quán)數(shù)值強(qiáng)化的法則,為神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)功能開發(fā)進(jìn)行了鋪墊。之后生物學(xué)家eccles通過實(shí)驗(yàn)證實(shí)了突觸的真實(shí)分流,為神經(jīng)網(wǎng)絡(luò)研究突觸的模擬功能提供了真實(shí)的模型基礎(chǔ)以及生物學(xué)的依據(jù)[2]。隨后,出現(xiàn)了能夠模擬行為以及條件反射的處理機(jī)和自適應(yīng)線性網(wǎng)絡(luò)模型,提高了人工神經(jīng)網(wǎng)絡(luò)的速度和精準(zhǔn)度。這一系列研究成果的出現(xiàn)為人工神經(jīng)網(wǎng)絡(luò)的形成和發(fā)展提供了可能。
2.2低谷時(shí)期。
在人工神經(jīng)網(wǎng)絡(luò)形成的初期,人們只是熱衷于對(duì)它的研究,卻對(duì)其自身的局限進(jìn)行了忽視。minskyh和papert通過多年對(duì)神經(jīng)網(wǎng)絡(luò)的研究,在1969年對(duì)之前所取得的研究成果提出了質(zhì)疑,認(rèn)為當(dāng)前研究出的神經(jīng)網(wǎng)絡(luò)只合適處理比較簡單的線性問題,對(duì)于非線性問題以及多層網(wǎng)絡(luò)問題卻無法解決。由于他們的質(zhì)疑,使神經(jīng)網(wǎng)絡(luò)的發(fā)展進(jìn)入了低谷時(shí)期,但是在這一時(shí)期,專家和學(xué)者也并沒有停止對(duì)神經(jīng)網(wǎng)絡(luò)的研究,針對(duì)他們的質(zhì)疑也得出一些相應(yīng)的研究成果。
2.3復(fù)興時(shí)期。
美國的物理學(xué)家hopfield在1982年提出了新的神經(jīng)網(wǎng)絡(luò)模型,并通過實(shí)驗(yàn)證明在滿足一定的條件時(shí),神經(jīng)網(wǎng)絡(luò)是能夠達(dá)到穩(wěn)定的狀態(tài)的。通過他的研究和帶動(dòng),眾多專家學(xué)者又重新開始了對(duì)人工神經(jīng)網(wǎng)絡(luò)方面的研究,推動(dòng)了神經(jīng)網(wǎng)絡(luò)的再一次發(fā)展[3]。經(jīng)過專家學(xué)者的不斷努力,提出了各種不同的人工神經(jīng)網(wǎng)絡(luò)的模型,神經(jīng)網(wǎng)絡(luò)理論研究不斷深化,新的理論和方法層出不窮,使神經(jīng)網(wǎng)絡(luò)的研究和應(yīng)用進(jìn)入了一個(gè)嶄新的時(shí)期。
2.4穩(wěn)步發(fā)展時(shí)期。
隨著人工神經(jīng)網(wǎng)絡(luò)研究在世界范圍內(nèi)的再次興起,我國也迎來了相關(guān)理論研究的熱潮,在人工神經(jīng)網(wǎng)絡(luò)和計(jì)算機(jī)技術(shù)方面取得了突破性的進(jìn)展。到20世紀(jì)90年代時(shí),國內(nèi)對(duì)于神經(jīng)網(wǎng)絡(luò)領(lǐng)域的研究得到了進(jìn)一步的完善和發(fā)展,而且能夠利用神經(jīng)網(wǎng)絡(luò)對(duì)非線性的系統(tǒng)控制問題進(jìn)行解決,研究成果顯著。隨著各類人工神經(jīng)網(wǎng)絡(luò)的相關(guān)刊物的創(chuàng)建和相關(guān)學(xué)術(shù)會(huì)議的召開,我國人工神經(jīng)網(wǎng)絡(luò)的研究和應(yīng)用條件逐步改善,得到了國際的.關(guān)注。
隨著人工神經(jīng)網(wǎng)絡(luò)的穩(wěn)步發(fā)展,逐漸建立了光學(xué)神經(jīng)網(wǎng)絡(luò)系統(tǒng),利用光學(xué)的強(qiáng)大功能,提高了人工神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)能力和自適應(yīng)能力。對(duì)非線性動(dòng)態(tài)系統(tǒng)的控制問題,采取有效措施,提高超平面的光滑性,對(duì)其精度進(jìn)行改進(jìn)。之后有專家提出了關(guān)于人工神經(jīng)網(wǎng)絡(luò)的抽取算法,雖然保證了精度,但也加大了消耗,在一定程度上降低了神經(jīng)網(wǎng)絡(luò)的效率,因此在此基礎(chǔ)上又提出了改進(jìn)算法fernn?;煦缟窠?jīng)網(wǎng)絡(luò)的發(fā)展也得到了相應(yīng)的進(jìn)步,提高了神經(jīng)網(wǎng)絡(luò)的泛化能力。
人工神經(jīng)網(wǎng)絡(luò)論文篇八
神經(jīng)網(wǎng)絡(luò)是近年來迅猛發(fā)展的前沿課題,它對(duì)突破現(xiàn)有科學(xué)技術(shù)的瓶頸起到重大的作用。下面要為大家分享的就是神經(jīng)網(wǎng)絡(luò)論文,希望你會(huì)喜歡!
摘要。
人工神經(jīng)網(wǎng)絡(luò)是近年來迅猛發(fā)展的前沿課題,它對(duì)突破現(xiàn)有科學(xué)技術(shù)的瓶頸起到重大的作用。本文剖析了人工神經(jīng)網(wǎng)絡(luò)的特征、模型結(jié)構(gòu)以及未來的發(fā)展趨勢(shì)。
人工神經(jīng)網(wǎng)絡(luò)(ann)是一種用計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)模擬生物神經(jīng)網(wǎng)絡(luò)的智能神經(jīng)系統(tǒng),它是在現(xiàn)代神經(jīng)生物學(xué)研究成果的基礎(chǔ)上發(fā)展起來的,模擬人腦信息處理機(jī)制的一種網(wǎng)絡(luò)系統(tǒng),它不但具有處理數(shù)值數(shù)據(jù)的計(jì)算能力,而且還具有處理知識(shí)的學(xué)習(xí)、聯(lián)想和記憶能力。
人工神經(jīng)網(wǎng)絡(luò)模擬了大腦神經(jīng)元的組織方式,反映了人腦的一些基本功能,為研究人工智能開辟了新的途徑。它具有以下基本特征:
1.1并行分布性。
因?yàn)槿斯ど窠?jīng)網(wǎng)絡(luò)中的神經(jīng)元排列并不是雜亂無章的,往往是以一種有規(guī)律的序列排列,這種結(jié)構(gòu)非常適合并行計(jì)算。同時(shí)如果將每一個(gè)神經(jīng)元看作是一個(gè)基本的處理單元,則整個(gè)系統(tǒng)可以是一個(gè)分布式處理系統(tǒng),使得計(jì)算快速。
1.2可學(xué)習(xí)性和自適應(yīng)性。
一個(gè)相對(duì)很小的人工神經(jīng)網(wǎng)絡(luò)可存儲(chǔ)大量的專家知識(shí),并能根據(jù)學(xué)習(xí)算法,或利用指導(dǎo)系統(tǒng)模擬現(xiàn)實(shí)環(huán)境(稱為有教師學(xué)習(xí)),或?qū)斎脒M(jìn)行自適應(yīng)學(xué)習(xí)(稱為無教師學(xué)習(xí)),可以處理不確定或不知道的事情,不斷主動(dòng)學(xué)習(xí),不斷完善知識(shí)的存儲(chǔ)。
(3)魯棒性和容錯(cuò)性。
由于采用大量的神經(jīng)元及其相互連接,具有聯(lián)想映射與聯(lián)想記憶能力,容錯(cuò)性保證網(wǎng)絡(luò)將不完整的、畸變的輸入樣本恢復(fù)成完整的原型,魯棒性使得網(wǎng)絡(luò)中的神經(jīng)元或突觸遭到破壞時(shí)網(wǎng)絡(luò)仍然具有學(xué)習(xí)和記憶能力,不會(huì)對(duì)整體系統(tǒng)帶來嚴(yán)重的影響。
1.3泛化能力。
人工神經(jīng)網(wǎng)絡(luò)是大規(guī)模的非線性系統(tǒng),提供了系統(tǒng)協(xié)同和自組織的潛力,它能充分逼近任意復(fù)雜的非線性關(guān)系。如果輸入發(fā)生較小變化,則輸出能夠保持相當(dāng)小的差距。
1.4信息綜合能力。
任何知識(shí)規(guī)則都可以通過對(duì)范例的學(xué)習(xí)存儲(chǔ)于同一個(gè)神經(jīng)網(wǎng)絡(luò)的各連接權(quán)值中,能同時(shí)處理定量和定性的信息,適用于處理復(fù)雜非線性和不確定對(duì)象。
神經(jīng)網(wǎng)絡(luò)是在對(duì)人腦思維方式研究的基礎(chǔ)上,將其抽象模擬反映人腦基本功能的一種并行處理連接網(wǎng)絡(luò)。神經(jīng)元是神經(jīng)網(wǎng)絡(luò)的基本處理單元。
在神經(jīng)網(wǎng)絡(luò)的發(fā)展過程中,從不同角度對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行了不同層次的描述和模擬,提出了各種各樣的神經(jīng)網(wǎng)絡(luò)模型,其中最具有代表性的`神經(jīng)網(wǎng)絡(luò)模型有:感知器、線性神經(jīng)網(wǎng)絡(luò)、bp網(wǎng)絡(luò)、自組織網(wǎng)絡(luò)、徑向基函數(shù)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)等等。
神經(jīng)元矩陣是神經(jīng)網(wǎng)絡(luò)模型的一種新構(gòu)想,是專門為神經(jīng)網(wǎng)絡(luò)打造的一個(gè)矩陣,它符合神經(jīng)元的一切特征。
(1)容器可產(chǎn)生一種無形的約束力,使系統(tǒng)得以形成,容器不是全封閉的,從而保證系統(tǒng)與外界的溝通和交互;各向量間可用相互作用的力來聯(lián)系,而各個(gè)信使粒則受控于容器、中空向量以及其它的信使粒。各神經(jīng)元之間自主交互,神經(jīng)元矩陣是一種多層次的管理,即一層管理一層。系統(tǒng)具有明顯的層級(jí)制和分塊制,每層每塊均獨(dú)立且協(xié)同工作,即每層每塊均含組織和自組織因素。
(2)向量觸頭是中空的,信使粒可以通過向量或存儲(chǔ)于向量中,所以又稱為中空向量。向量存儲(chǔ)了信使粒后,可以吸引更多的信使粒在附近,或使鄰近向量轉(zhuǎn)向、伸長,進(jìn)而形成相對(duì)穩(wěn)定的信息通路。
(3)當(dāng)兩條或更多的信息通路匯集時(shí),可能伴隨著通路的增強(qiáng)、合并,以及信使粒的聚集、交換,這是神經(jīng)元矩陣運(yùn)算的一種主要形式。通路的形成過程,也就是是神經(jīng)元矩陣分塊、分層、形成聯(lián)接的過程,也為矩陣系統(tǒng)宏觀管理、層級(jí)控制的實(shí)現(xiàn)奠定了基礎(chǔ)。
神經(jīng)元矩陣亦是一種具有生物網(wǎng)絡(luò)特征的數(shù)學(xué)模型,綜合了數(shù)學(xué)上矩陣和向量等重要概念,是一種立體的矩陣結(jié)構(gòu)。尤其是將矩陣的分塊特性和向量的指向特征結(jié)合起來,更好的體現(xiàn)了神經(jīng)網(wǎng)絡(luò)的整體性和單元獨(dú)立性,系統(tǒng)的組織和自組織特征也更為凸顯。信使粒以“點(diǎn)”的數(shù)學(xué)概念,增強(qiáng)了系統(tǒng)的信息特征,尤其是增強(qiáng)了矩陣的存儲(chǔ)和運(yùn)算功能。
人工神經(jīng)網(wǎng)絡(luò)是邊緣性交叉科學(xué),它涉及計(jì)算機(jī)、人工智能、自動(dòng)化、生理學(xué)等多個(gè)學(xué)科領(lǐng)域,研究它的發(fā)展具有非常重要意義。針對(duì)神經(jīng)網(wǎng)絡(luò)的社會(huì)需求以及存在的問題,今后神經(jīng)網(wǎng)絡(luò)的研究趨勢(shì)主要側(cè)重以下幾個(gè)方面。
4.1增強(qiáng)對(duì)智能和機(jī)器關(guān)系問題的認(rèn)識(shí)。
人腦是一個(gè)結(jié)構(gòu)異常復(fù)雜的信息系統(tǒng),我們所知道的唯一智能系統(tǒng),隨著信息論、控制論、計(jì)算機(jī)科學(xué)、生命科學(xué)的發(fā)展,人們?cè)絹碓襟@異于大腦的奇妙。對(duì)人腦智能化實(shí)現(xiàn)的研究,是神經(jīng)網(wǎng)絡(luò)研究今后的需要增強(qiáng)的地發(fā)展方向。
4.2發(fā)展神經(jīng)計(jì)算和進(jìn)化計(jì)算的理論及應(yīng)用。
利用神經(jīng)科學(xué)理論的研究成果,用數(shù)理方法探索智能水平更高的人工神經(jīng)網(wǎng)絡(luò)模型,深入研究網(wǎng)絡(luò)的算法和性能,使離散符號(hào)計(jì)算、神經(jīng)計(jì)算和進(jìn)化計(jì)算相互促進(jìn),開發(fā)新的網(wǎng)絡(luò)數(shù)理理論。
4.3擴(kuò)大神經(jīng)元芯片和神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的作用。
神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)體現(xiàn)了結(jié)構(gòu)和算法的統(tǒng)一,是硬件和軟件的混合體,神經(jīng)元矩陣即是如此。人工神經(jīng)網(wǎng)絡(luò)既可以用傳統(tǒng)計(jì)算機(jī)來模擬,也可以用集成電路芯片組成神經(jīng)計(jì)算機(jī),甚至還可以生物芯片方式實(shí)現(xiàn),因此研制電子神經(jīng)網(wǎng)絡(luò)計(jì)算機(jī)潛力巨大。如何讓傳統(tǒng)的計(jì)算機(jī)、人工智能技術(shù)和神經(jīng)網(wǎng)絡(luò)計(jì)算機(jī)相融合也是前沿課題,具有十分誘人的前景。
4.4促進(jìn)信息科學(xué)和生命科學(xué)的相互融合。
信息科學(xué)與生命科學(xué)的相互交叉、相互促進(jìn)、相互滲透是現(xiàn)代科學(xué)的一個(gè)顯著特點(diǎn)。神經(jīng)網(wǎng)絡(luò)與各種智能處理方法有機(jī)結(jié)合具有很大的發(fā)展前景,如與專家系統(tǒng)、模糊邏輯、遺傳算法、小波分析等相結(jié)合,取長補(bǔ)短,可以獲得更好的應(yīng)用效果。
人工神經(jīng)網(wǎng)絡(luò)論文篇九
人工神經(jīng)網(wǎng)絡(luò)在信息領(lǐng)域中的應(yīng)用主要體現(xiàn)在信息處理和模式識(shí)別兩個(gè)方面。由于科技的發(fā)展,當(dāng)代信息處理工作越來越復(fù)雜,利用人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)可以對(duì)人的思維進(jìn)行模仿甚至是替代,面對(duì)問題自動(dòng)診斷和解決,能夠輕松解決許多傳統(tǒng)方法無法解決的問題,在軍事信息處理中的應(yīng)用極為廣泛[4]。模式識(shí)別是對(duì)事物表象的各種信息進(jìn)行整理和分析,對(duì)事物進(jìn)行辨別和解釋的一個(gè)過程,這樣對(duì)信息進(jìn)行處理的過程與人類大腦的思維方式很相像。模式識(shí)別的方法可以分為兩種,一種是統(tǒng)計(jì)模式識(shí)別,還有一種是結(jié)構(gòu)模式識(shí)別,在語音識(shí)別和指紋識(shí)別等方面得到了廣泛的應(yīng)用。
3.2在醫(yī)學(xué)領(lǐng)域的應(yīng)用。
人工神經(jīng)網(wǎng)絡(luò)對(duì)于非線性問題處理十分有效,而人體的構(gòu)成和疾病形成的原因十分復(fù)雜,具有不可預(yù)測(cè)性,在生物信號(hào)的表現(xiàn)形式和變化規(guī)律上也很難掌握,信息檢測(cè)和分析等諸多方面都存在著復(fù)雜的非線性聯(lián)系,所以應(yīng)用人工神經(jīng)網(wǎng)絡(luò)決解這些非線性問題具有特殊意義[5]。目前,在醫(yī)學(xué)領(lǐng)域中的應(yīng)用涉及到理論和臨床的各個(gè)方面,最主要的是生物信號(hào)的檢測(cè)和自動(dòng)分析以及專家系統(tǒng)等方面的應(yīng)用。
3.3在經(jīng)濟(jì)領(lǐng)域中的應(yīng)用。
經(jīng)濟(jì)領(lǐng)域中的商品價(jià)格、供需關(guān)系、風(fēng)險(xiǎn)系數(shù)等方面的信息構(gòu)成也十分復(fù)雜且變幻莫測(cè),人工神經(jīng)網(wǎng)絡(luò)可以對(duì)不完整的信息以及模糊不確定的信息進(jìn)行簡單明了的處理,與傳統(tǒng)的經(jīng)濟(jì)統(tǒng)計(jì)方法相比具有其無法比擬的優(yōu)勢(shì),數(shù)據(jù)分析的穩(wěn)定性和可靠性更強(qiáng)。
3.4在其他領(lǐng)域的應(yīng)用。
人工神經(jīng)網(wǎng)絡(luò)在控制領(lǐng)域、交通領(lǐng)域、心理學(xué)領(lǐng)域等方面都有很廣泛的應(yīng)用,能夠?qū)Ω唠y度的非線性問題進(jìn)行處理,對(duì)交通運(yùn)輸方面進(jìn)行集成式的管理,以其高適應(yīng)性和優(yōu)秀的模擬性能解決了許多傳統(tǒng)方法無法解決的問題,促進(jìn)了各個(gè)領(lǐng)域的快速發(fā)展。
4總結(jié)。
隨著科技的發(fā)展,人工智能系統(tǒng)將進(jìn)入更加高級(jí)的發(fā)展階段,人工神經(jīng)網(wǎng)絡(luò)也將得到更快的發(fā)展和更加廣泛的應(yīng)用。人工神經(jīng)網(wǎng)絡(luò)也許無法完全對(duì)人腦進(jìn)行取代,但是其特有的非線性信息處理能力解決了許多人工無法解決的問題,在智能系統(tǒng)的各個(gè)領(lǐng)域中得到成功應(yīng)用,今后的發(fā)展趨勢(shì)將向著更加智能和集成的方向發(fā)展。
參考文獻(xiàn)。
[1]徐用懋,馮恩波.人工神經(jīng)網(wǎng)絡(luò)的發(fā)展及其在控制中的應(yīng)用[j].化工進(jìn)展,1993(5):8-12,20.
[5]崔永華.基于人工神經(jīng)網(wǎng)絡(luò)的河流匯流預(yù)報(bào)模型及應(yīng)用研究[d].鄭州大學(xué),.
人工神經(jīng)網(wǎng)絡(luò)論文篇十
神經(jīng)網(wǎng)絡(luò)是在對(duì)人腦思維方式研究的基礎(chǔ)上,將其抽象模擬反映人腦基本功能的一種并行處理連接網(wǎng)絡(luò)。神經(jīng)元是神經(jīng)網(wǎng)絡(luò)的基本處理單元。
在神經(jīng)網(wǎng)絡(luò)的發(fā)展過程中,從不同角度對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行了不同層次的描述和模擬,提出了各種各樣的神經(jīng)網(wǎng)絡(luò)模型,其中最具有代表性的神經(jīng)網(wǎng)絡(luò)模型有:感知器、線性神經(jīng)網(wǎng)絡(luò)、bp網(wǎng)絡(luò)、自組織網(wǎng)絡(luò)、徑向基函數(shù)網(wǎng)絡(luò)、反饋神經(jīng)網(wǎng)絡(luò)等等。
神經(jīng)元矩陣是神經(jīng)網(wǎng)絡(luò)模型的一種新構(gòu)想,是專門為神經(jīng)網(wǎng)絡(luò)打造的一個(gè)矩陣,它符合神經(jīng)元的一切特征。
(1)容器可產(chǎn)生一種無形的約束力,使系統(tǒng)得以形成,容器不是全封閉的,從而保證系統(tǒng)與外界的溝通和交互;各向量間可用相互作用的力來聯(lián)系,而各個(gè)信使粒則受控于容器、中空向量以及其它的信使粒。各神經(jīng)元之間自主交互,神經(jīng)元矩陣是一種多層次的管理,即一層管理一層。系統(tǒng)具有明顯的層級(jí)制和分塊制,每層每塊均獨(dú)立且協(xié)同工作,即每層每塊均含組織和自組織因素。
(2)向量觸頭是中空的,信使??梢酝ㄟ^向量或存儲(chǔ)于向量中,所以又稱為中空向量。向量存儲(chǔ)了信使粒后,可以吸引更多的信使粒在附近,或使鄰近向量轉(zhuǎn)向、伸長,進(jìn)而形成相對(duì)穩(wěn)定的信息通路。
(3)當(dāng)兩條或更多的信息通路匯集時(shí),可能伴隨著通路的增強(qiáng)、合并,以及信使粒的聚集、交換,這是神經(jīng)元矩陣運(yùn)算的一種主要形式。通路的形成過程,也就是是神經(jīng)元矩陣分塊、分層、形成聯(lián)接的過程,也為矩陣系統(tǒng)宏觀管理、層級(jí)控制的實(shí)現(xiàn)奠定了基礎(chǔ)。
神經(jīng)元矩陣亦是一種具有生物網(wǎng)絡(luò)特征的數(shù)學(xué)模型,綜合了數(shù)學(xué)上矩陣和向量等重要概念,是一種立體的矩陣結(jié)構(gòu)。尤其是將矩陣的分塊特性和向量的指向特征結(jié)合起來,更好的體現(xiàn)了神經(jīng)網(wǎng)絡(luò)的整體性和單元獨(dú)立性,系統(tǒng)的組織和自組織特征也更為凸顯。信使粒以“點(diǎn)”的數(shù)學(xué)概念,增強(qiáng)了系統(tǒng)的信息特征,尤其是增強(qiáng)了矩陣的存儲(chǔ)和運(yùn)算功能。
人工神經(jīng)網(wǎng)絡(luò)論文篇十一
摘要:軟件需求分析不僅僅是為了讓開發(fā)者滿足用戶要求,而且還可以幫助用戶了解軟件的性能和功能,具有一舉兩得的效果,但是如果軟件需求不符合實(shí)際需求,就會(huì)出現(xiàn)風(fēng)險(xiǎn),導(dǎo)致返工。在bp神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上,我們建立了軟件需求分析風(fēng)險(xiǎn)評(píng)估模型,以減少軟件開發(fā)的失敗率,規(guī)避因軟件需求分析失誤而帶來的實(shí)際存在的或潛在的風(fēng)險(xiǎn)。
關(guān)鍵詞:風(fēng)險(xiǎn);軟件需求;bp神經(jīng)網(wǎng)絡(luò);研究;分析。
軟件開發(fā)過程中,需求分析是一個(gè)關(guān)鍵性的階段。導(dǎo)致它失敗的原因有很多,例如開發(fā)者和用戶之間的溝通障礙、軟件本身的隱含性、需求信息的不對(duì)稱等等。這些問題導(dǎo)致的返工,增加了開發(fā)的成本,也損壞了企業(yè)形象,更可能流失掉部分用戶。因此,我們必須對(duì)軟件需求分析進(jìn)行風(fēng)險(xiǎn)評(píng)估管理,把負(fù)面影響降到最低?,F(xiàn)代商業(yè)發(fā)展中,各企業(yè)和企業(yè)之間的競爭日趨激烈,掌握最新的技術(shù),對(duì)技術(shù)進(jìn)行創(chuàng)新,才是企業(yè)在行業(yè)內(nèi)立足腳跟,獲得更加長遠(yuǎn)發(fā)展的方法,因此要想牢牢地把握企業(yè)的運(yùn)命就需要我們保持對(duì)技術(shù)創(chuàng)新的熱情,并在這條道路上樂此不疲。21世紀(jì),只有掌握了最新和最具有創(chuàng)造性的技術(shù),才能贏的最后的勝利,本文把bp網(wǎng)絡(luò)與軟件需求分析風(fēng)險(xiǎn)評(píng)估模型相結(jié)合,具有十分重要的意義。
bp神經(jīng)網(wǎng)絡(luò)是開發(fā)者使用最多的神經(jīng)網(wǎng)絡(luò)之一,它具有算法簡單、極強(qiáng)的魯棒性、收斂速度極快等優(yōu)點(diǎn)。最重要的一點(diǎn)是能夠最大限度的接近其真實(shí)系統(tǒng),非常適合于線性的、不確定的、模糊的軟件風(fēng)險(xiǎn)數(shù)據(jù)。bp算法是一種用于前向多層神經(jīng)網(wǎng)絡(luò)的的反傳學(xué)習(xí)算法。采用bp算法的數(shù)層感知器神經(jīng)網(wǎng)絡(luò)模型,它的基本思想是,學(xué)習(xí)過程由信號(hào)的正向傳播和誤差的反向傳播兩個(gè)過程組成。模糊理論采用模糊數(shù)學(xué)的方法,通過抽象思維,對(duì)處于多種因素作用下的事物做出總體評(píng)價(jià)。它的兩大主要特征是:第一,結(jié)果清晰;第二,系統(tǒng)性強(qiáng),這非常適合于各種非確定性問題的解決。
2軟件需求分析風(fēng)險(xiǎn)評(píng)估模型。
開發(fā)過程中,了解軟件需求是很重要的。軟件開發(fā)主要是依據(jù)需求的不同而設(shè)計(jì)出的產(chǎn)品。它包括了業(yè)務(wù)需求(組織和客戶高層次的目標(biāo))、用戶需求(用戶要求必須具備的需求)、功能需求(用戶可以通過完成任務(wù)滿足業(yè)務(wù)需求的產(chǎn)品中必須體現(xiàn)的軟件功能)。各種不同的需求都以不同的角度來呈現(xiàn),需要進(jìn)行多方位的分析方可得出準(zhǔn)確的結(jié)論。軟件需求分析就是對(duì)用戶所需軟件應(yīng)具備的屬性進(jìn)行分析,滿足用戶的真正需求。在完成軟件需求分析后,我們要能得出用戶所需的軟件系統(tǒng)要能夠做到哪些功能,對(duì)此還要有詳細(xì)準(zhǔn)確的說明書,也就是用戶的使用說明書,讓他們更快的了解產(chǎn)品。優(yōu)秀的需求具有以下特點(diǎn):完整性、準(zhǔn)確性、可行性、必要性、無歧義性和可行性。軟件需求分析風(fēng)險(xiǎn)是指由于多方面的影響,如用戶參與度、用戶需求的拓展變化、多角度的考慮、設(shè)計(jì)的精準(zhǔn)度和用戶與開發(fā)者的充分溝通等等,而造成需求分析的不準(zhǔn)確使得用戶的軟件需求得不到滿足。該風(fēng)險(xiǎn)評(píng)估模型主要是為了降低軟件需求分析中存在的風(fēng)險(xiǎn),從而使得評(píng)估需求分析更具加有效和更易操作。
3一種基于bp神經(jīng)網(wǎng)絡(luò)的軟件需求分析風(fēng)險(xiǎn)評(píng)估模型。
本文把bp神經(jīng)網(wǎng)絡(luò)和模糊理論加入到軟件需求分析風(fēng)險(xiǎn)評(píng)估模型中,利用bp神經(jīng)網(wǎng)絡(luò)的非線性映射屬性和模糊理論的超強(qiáng)表達(dá)能力與被理解力,幫助提高風(fēng)險(xiǎn)評(píng)估的有效性和預(yù)測(cè)性。軟件需求分析風(fēng)險(xiǎn)的評(píng)估模型包括風(fēng)險(xiǎn)識(shí)別、風(fēng)險(xiǎn)分析、風(fēng)險(xiǎn)評(píng)估三個(gè)模塊。風(fēng)險(xiǎn)識(shí)別的主要目的是考察研究軟件需求分析階段具體的情況,識(shí)別并記錄該階段存在的或潛在的風(fēng)險(xiǎn),輸入來源是專家的經(jīng)驗(yàn)分析和歷史風(fēng)險(xiǎn)數(shù)據(jù)庫。
一般步驟包括:
a:找出軟件需求分析風(fēng)險(xiǎn)指標(biāo);
b:搜索歷史數(shù)據(jù)庫,列出存在的數(shù)據(jù)庫中的歷史案例;
c:通過專家分析,列出具有風(fēng)險(xiǎn)等級(jí)的列表;
d:將確定了的風(fēng)險(xiǎn)列表提交數(shù)據(jù)庫并更新。風(fēng)險(xiǎn)分析是細(xì)化第一階段的風(fēng)險(xiǎn),分析其產(chǎn)生的影響和等級(jí),找出各指標(biāo)與風(fēng)險(xiǎn)級(jí)別之間的線性關(guān)系亦或非線性關(guān)系。本文引入bp神經(jīng)網(wǎng)絡(luò)和模糊理論,利用bp神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)風(fēng)險(xiǎn)評(píng)估指標(biāo)和風(fēng)險(xiǎn)級(jí)別之間的非線性映射關(guān)系,還利用模糊理論的超強(qiáng)表達(dá)能力和容易理解的屬性,提高整個(gè)風(fēng)險(xiǎn)評(píng)估模型的學(xué)習(xí)能力和表達(dá)能力,得出更符合實(shí)際的評(píng)估報(bào)告。
主要的方法包括:
a:揭示原因和結(jié)果之間的聯(lián)系,追根溯源;
b:建立模型進(jìn)行認(rèn)識(shí)和理解;
c:通過嘗試各種組合找出導(dǎo)致失敗的因素。風(fēng)險(xiǎn)評(píng)估需最后明確所有存在的風(fēng)險(xiǎn)和它們的等級(jí),給予開發(fā)者一個(gè)詳細(xì)的報(bào)告。本階段只要利用bp神經(jīng)網(wǎng)絡(luò)的`輸入層、輸出層、隱含層數(shù)、隱含層節(jié)點(diǎn)數(shù)。輸入層節(jié)點(diǎn)是經(jīng)過模糊預(yù)處理的17個(gè)需求分析風(fēng)險(xiǎn)評(píng)估指標(biāo);輸出層節(jié)點(diǎn)是需求分析風(fēng)險(xiǎn)等級(jí);隱含層數(shù)越多性能越高誤差越低;隱含節(jié)點(diǎn)越多,網(wǎng)絡(luò)功能越強(qiáng)大,但是過多則會(huì)使網(wǎng)絡(luò)功能減弱。
在bp神經(jīng)網(wǎng)絡(luò)基礎(chǔ)上,建立的軟件需求分析風(fēng)險(xiǎn)評(píng)估模型,它操作的流程大致是三個(gè)方向。首先,識(shí)別軟件需求分析階段存在的、潛在的風(fēng)險(xiǎn);然后,利用bp神經(jīng)網(wǎng)絡(luò)和模糊理論的特有屬性、眾多優(yōu)點(diǎn)進(jìn)行分析,通過歷史數(shù)據(jù)庫,專家知識(shí)、專家討論,列出風(fēng)險(xiǎn)表格;最后,對(duì)風(fēng)險(xiǎn)進(jìn)行最后的評(píng)估,從而有效預(yù)測(cè)軟件開發(fā)過程中所遇到的風(fēng)險(xiǎn),并且進(jìn)行規(guī)避。
4結(jié)束語。
隨著經(jīng)濟(jì)的高速發(fā)展,網(wǎng)絡(luò)軟件也成為人們工作生活中一個(gè)非常重要的工具。軟件需求的增多帶來了很多的問題,軟件開發(fā)的過程充滿了阻礙,軟件需求的滿意度也在日漸降低。因此,提高軟件開發(fā)的速度、保證開發(fā)軟件的質(zhì)量,降低風(fēng)險(xiǎn)、減少開發(fā)成本、滿足用戶真正的需求等等,對(duì)軟件需求分析風(fēng)險(xiǎn)進(jìn)行評(píng)估,建立軟件需求分析風(fēng)險(xiǎn)評(píng)估模型,是一件非常值得研究和實(shí)施的事情。本文研究的內(nèi)容不僅僅達(dá)到了需求分析的目的,提出了新的思維方式和參考方向,而且還能更有效的預(yù)測(cè)軟件需求分析風(fēng)險(xiǎn),真正滿足用戶的軟件需求。基金項(xiàng)目:吉林省教育廳“十二五”科學(xué)技術(shù)研究項(xiàng)目“基于ahp和群決策向量分析高校干部綜合測(cè)評(píng)方法和系統(tǒng)實(shí)現(xiàn)”(吉教科合字第402號(hào));吉林省教育科學(xué)“十二五”規(guī)劃課題“構(gòu)建以學(xué)習(xí)者為主體的遠(yuǎn)程教育支持服務(wù)體系的研究”。
參考文獻(xiàn):
人工神經(jīng)網(wǎng)絡(luò)論文篇十二
神經(jīng)網(wǎng)絡(luò)作為新型的計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)技術(shù),具有提高評(píng)價(jià)結(jié)果準(zhǔn)確性、可靠性的特點(diǎn)。計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)中神經(jīng)網(wǎng)絡(luò)的應(yīng)用也具有提高評(píng)價(jià)體系科學(xué)合理化的作用,具體內(nèi)容如下:神經(jīng)網(wǎng)絡(luò)適應(yīng)性強(qiáng)。計(jì)算機(jī)網(wǎng)絡(luò)環(huán)境相對(duì)復(fù)雜,這就要求安全評(píng)價(jià)系統(tǒng)具有較強(qiáng)的適應(yīng)能力,可以根據(jù)網(wǎng)絡(luò)變化采取最具針對(duì)性的應(yīng)對(duì)措施?;谏窠?jīng)網(wǎng)絡(luò)學(xué)習(xí)能力強(qiáng)的優(yōu)勢(shì),用戶在計(jì)算機(jī)輸入信息時(shí),神經(jīng)網(wǎng)絡(luò)系統(tǒng)可以將誤差降至最低,并且根據(jù)網(wǎng)絡(luò)系統(tǒng)的情況總結(jié)出規(guī)律,在計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)中發(fā)揮出高效的應(yīng)用作用;神經(jīng)網(wǎng)絡(luò)容錯(cuò)性高,針對(duì)計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)中不完整的信息,神經(jīng)網(wǎng)絡(luò)利用容錯(cuò)性強(qiáng)的特性,可以根據(jù)相對(duì)應(yīng)節(jié)點(diǎn)的特征分析,降低結(jié)果產(chǎn)生的誤差。即使節(jié)點(diǎn)信息不匹配時(shí),對(duì)計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)也不會(huì)造成過大的不良影響;神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)可在線應(yīng)用。在信息化時(shí)代下,對(duì)網(wǎng)絡(luò)運(yùn)行效率提出了一定要求,神經(jīng)網(wǎng)絡(luò)在計(jì)算機(jī)網(wǎng)絡(luò)安全評(píng)價(jià)中通過不斷的訓(xùn)練,對(duì)于輸入數(shù)據(jù)迅速產(chǎn)生結(jié)果,便于用戶的直接使用,滿足了信息化時(shí)代的應(yīng)用要求。
人工神經(jīng)網(wǎng)絡(luò)論文篇十三
在20世紀(jì)40年代,生物學(xué)家mcculloch與數(shù)學(xué)家pitts共同發(fā)表文章,第一次提出了關(guān)于神經(jīng)元的模型m-p模型,這一理論的提出為神經(jīng)網(wǎng)絡(luò)模型的研究和開發(fā)奠定了基礎(chǔ),在此基礎(chǔ)上人工神經(jīng)網(wǎng)絡(luò)研究逐漸展開。1951年,心理學(xué)家hebb提出了關(guān)于連接權(quán)數(shù)值強(qiáng)化的法則,為神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)功能開發(fā)進(jìn)行了鋪墊。之后生物學(xué)家eccles通過實(shí)驗(yàn)證實(shí)了突觸的真實(shí)分流,為神經(jīng)網(wǎng)絡(luò)研究突觸的模擬功能提供了真實(shí)的模型基礎(chǔ)以及生物學(xué)的依據(jù)[2]。隨后,出現(xiàn)了能夠模擬行為以及條件反射的處理機(jī)和自適應(yīng)線性網(wǎng)絡(luò)模型,提高了人工神經(jīng)網(wǎng)絡(luò)的速度和精準(zhǔn)度。這一系列研究成果的出現(xiàn)為人工神經(jīng)網(wǎng)絡(luò)的形成和發(fā)展提供了可能。
2.2低谷時(shí)期。
在人工神經(jīng)網(wǎng)絡(luò)形成的初期,人們只是熱衷于對(duì)它的研究,卻對(duì)其自身的局限進(jìn)行了忽視。minskyh和papert通過多年對(duì)神經(jīng)網(wǎng)絡(luò)的研究,在1969年對(duì)之前所取得的研究成果提出了質(zhì)疑,認(rèn)為當(dāng)前研究出的神經(jīng)網(wǎng)絡(luò)只合適處理比較簡單的線性問題,對(duì)于非線性問題以及多層網(wǎng)絡(luò)問題卻無法解決。由于他們的質(zhì)疑,使神經(jīng)網(wǎng)絡(luò)的發(fā)展進(jìn)入了低谷時(shí)期,但是在這一時(shí)期,專家和學(xué)者也并沒有停止對(duì)神經(jīng)網(wǎng)絡(luò)的研究,針對(duì)他們的質(zhì)疑也得出一些相應(yīng)的研究成果。
2.3復(fù)興時(shí)期。
美國的物理學(xué)家hopfield在1982年提出了新的神經(jīng)網(wǎng)絡(luò)模型,并通過實(shí)驗(yàn)證明在滿足一定的條件時(shí),神經(jīng)網(wǎng)絡(luò)是能夠達(dá)到穩(wěn)定的狀態(tài)的。通過他的研究和帶動(dòng),眾多專家學(xué)者又重新開始了對(duì)人工神經(jīng)網(wǎng)絡(luò)方面的研究,推動(dòng)了神經(jīng)網(wǎng)絡(luò)的再一次發(fā)展[3]。經(jīng)過專家學(xué)者的不斷努力,提出了各種不同的人工神經(jīng)網(wǎng)絡(luò)的模型,神經(jīng)網(wǎng)絡(luò)理論研究不斷深化,新的理論和方法層出不窮,使神經(jīng)網(wǎng)絡(luò)的研究和應(yīng)用進(jìn)入了一個(gè)嶄新的時(shí)期。
2.4穩(wěn)步發(fā)展時(shí)期。
隨著人工神經(jīng)網(wǎng)絡(luò)研究在世界范圍內(nèi)的再次興起,我國也迎來了相關(guān)理論研究的熱潮,在人工神經(jīng)網(wǎng)絡(luò)和計(jì)算機(jī)技術(shù)方面取得了突破性的進(jìn)展。到20世紀(jì)90年代時(shí),國內(nèi)對(duì)于神經(jīng)網(wǎng)絡(luò)領(lǐng)域的研究得到了進(jìn)一步的完善和發(fā)展,而且能夠利用神經(jīng)網(wǎng)絡(luò)對(duì)非線性的系統(tǒng)控制問題進(jìn)行解決,研究成果顯著。隨著各類人工神經(jīng)網(wǎng)絡(luò)的相關(guān)刊物的創(chuàng)建和相關(guān)學(xué)術(shù)會(huì)議的召開,我國人工神經(jīng)網(wǎng)絡(luò)的研究和應(yīng)用條件逐步改善,得到了國際的.關(guān)注。
隨著人工神經(jīng)網(wǎng)絡(luò)的穩(wěn)步發(fā)展,逐漸建立了光學(xué)神經(jīng)網(wǎng)絡(luò)系統(tǒng),利用光學(xué)的強(qiáng)大功能,提高了人工神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)能力和自適應(yīng)能力。對(duì)非線性動(dòng)態(tài)系統(tǒng)的控制問題,采取有效措施,提高超平面的光滑性,對(duì)其精度進(jìn)行改進(jìn)。之后有專家提出了關(guān)于人工神經(jīng)網(wǎng)絡(luò)的抽取算法,雖然保證了精度,但也加大了消耗,在一定程度上降低了神經(jīng)網(wǎng)絡(luò)的效率,因此在此基礎(chǔ)上又提出了改進(jìn)算法fernn?;煦缟窠?jīng)網(wǎng)絡(luò)的發(fā)展也得到了相應(yīng)的進(jìn)步,提高了神經(jīng)網(wǎng)絡(luò)的泛化能力。
人工神經(jīng)網(wǎng)絡(luò)論文篇十四
摘要:電氣工程及其自動(dòng)化的實(shí)現(xiàn),從根本上促進(jìn)我國電氣產(chǎn)業(yè)迅速發(fā)展,滿足人們的日常生活需求。但在實(shí)際的自動(dòng)化發(fā)展過程中,還存在一些不足之處影響電氣工程的生產(chǎn)效率,難以滿足當(dāng)前時(shí)代的需求,基于此,作者結(jié)合自身經(jīng)驗(yàn),對(duì)電氣工程及其自動(dòng)化發(fā)展的現(xiàn)狀,及其中存在的問題及解決措施進(jìn)行有效的分析,以供相關(guān)人員參考,為其提供借鑒。
關(guān)鍵詞:電氣工程;自動(dòng)化;問題。
引言。
隨著時(shí)代不斷發(fā)展,信息技術(shù)、電氣工程自動(dòng)化技術(shù)逐漸被廣泛應(yīng)用。受生產(chǎn)力水平提升的影響,人們對(duì)于電氣工程及其自動(dòng)化的要求也不斷提升,以滿足時(shí)代發(fā)展,但實(shí)際上,現(xiàn)階段電氣工程及其自動(dòng)化中存在諸多問題,其技術(shù)水平與社會(huì)生產(chǎn)力發(fā)展需求未能有效的相適應(yīng),難以滿足當(dāng)前社會(huì)的需求。
1我國電氣工程及其自動(dòng)化現(xiàn)狀分析。
電氣工程及其自動(dòng)化屬于新型的技術(shù),具有較強(qiáng)的綜合性,直接影響我國工業(yè)的生產(chǎn)水平,并與人們的日常生活息息相關(guān)?,F(xiàn)階段,我國電氣工程技術(shù)不斷創(chuàng)新發(fā)展,從根本上帶動(dòng)電氣工程及其自動(dòng)化領(lǐng)域發(fā)展,并促使其逐漸向高新技術(shù)轉(zhuǎn)化,擴(kuò)大技術(shù)的應(yīng)用范圍,從整體上促進(jìn)國民經(jīng)濟(jì)提升。實(shí)際上,電氣工程及其自動(dòng)化屬于現(xiàn)代電氣信息領(lǐng)域,其涵蓋內(nèi)容非常廣泛,包括與電氣工程相關(guān)的所有工程,并在多個(gè)領(lǐng)域中進(jìn)行應(yīng)用,例如,工業(yè)領(lǐng)域、軍事領(lǐng)域、農(nóng)業(yè)領(lǐng)域等,對(duì)我國的工業(yè)與社會(huì)發(fā)展起到積極的促進(jìn)作用,同時(shí),電氣工程及其自動(dòng)化技術(shù)的創(chuàng)新與發(fā)展對(duì)于人們的日常生活方式與生產(chǎn)方式也產(chǎn)生影響,以推動(dòng)國民經(jīng)濟(jì)穩(wěn)定發(fā)展[1]。
2我國電氣工程及其自動(dòng)化中存在的問題。
2.1電氣工程能源損耗問題。
在電氣工程及其自動(dòng)化的實(shí)際應(yīng)用過程中,受自身的工作性質(zhì)與設(shè)備影響,存在能源損耗問題,直接造成能源浪費(fèi),加劇現(xiàn)階段我國能源緊缺的壓力,與當(dāng)前的節(jié)能減排理念相悖,不符合可持續(xù)發(fā)展戰(zhàn)略的實(shí)施,同時(shí)提升了工業(yè)生產(chǎn)的成本支出,降低了經(jīng)濟(jì)效益。
2.2電氣系統(tǒng)的集成化不高。
現(xiàn)階段,受時(shí)代發(fā)展與實(shí)際需求的影響,促使電氣工程自動(dòng)化系統(tǒng)逐漸向集成化方向發(fā)展,以滿足當(dāng)前時(shí)代的要求,但由于我國電氣集成化起步較晚,當(dāng)前的集成化水平較低,處于獨(dú)立自動(dòng)化階段,影響信息與資源的共享。
2.3電氣工程自動(dòng)化系統(tǒng)難以統(tǒng)一。
為了滿足當(dāng)前的發(fā)展需求,電氣工程要利用先進(jìn)的技術(shù),構(gòu)建完善合理的自動(dòng)化系統(tǒng),以此提升工作效率,但受多種因素影響,系統(tǒng)難以進(jìn)行合理的統(tǒng)一,缺乏兼容性,降低了系統(tǒng)的工作效率。
2.4電氣工程質(zhì)量達(dá)不到要求。
電氣工程的質(zhì)量直接影響其使用壽命,但受實(shí)際的工程質(zhì)量管理工作影響,以及工作人員自身的管理水平偏低、管理意識(shí)落后等因素的影響,導(dǎo)致電氣工程質(zhì)量經(jīng)常達(dá)不到實(shí)際的要求,質(zhì)量管理效率不高。
3現(xiàn)階段我國電氣工程及其自動(dòng)化中存在問題的解決措施。
3.1合理對(duì)電氣工程進(jìn)行節(jié)能設(shè)計(jì)。
在當(dāng)前的時(shí)代背景下,工作人員應(yīng)重視電氣工程的能源損耗問題,利用先進(jìn)的技術(shù)手段,降低能源消耗,以滿足當(dāng)前可持續(xù)發(fā)展戰(zhàn)略,緩解我國能源與資源緊缺問題。例如,利用合理的技術(shù)手段,優(yōu)化電氣工程的節(jié)能設(shè)計(jì),從根本上降低能源的不必要浪費(fèi),降低成本的支出。在實(shí)際的節(jié)能設(shè)計(jì)優(yōu)化過程中,工作人員應(yīng)結(jié)合實(shí)際情況,以工作最基本要求為基礎(chǔ),對(duì)非重點(diǎn)環(huán)節(jié)進(jìn)行有效的改良,如,對(duì)現(xiàn)階段的變壓器進(jìn)行改良,選擇繞組阻值較小的供電系統(tǒng)變壓器,以此來降低變壓器的能源損耗,從而減少不必要的損失浪費(fèi),達(dá)到節(jié)能的目的,促使我國電氣工程實(shí)現(xiàn)可持續(xù)發(fā)展。
3.2從整體上提升電氣工程自動(dòng)化系統(tǒng)的集成化水平。
提升工作人員自身的專業(yè)水平與能力,利用工作人員的專業(yè)技術(shù),建立完善的系統(tǒng)平臺(tái),并充分發(fā)揮其創(chuàng)新意識(shí)與主觀意識(shí),從根本上滿足實(shí)際的集成化需求,具體來說,主要從以下兩方面入手:一方面,完善電氣工程系統(tǒng)的兼容性,保證系統(tǒng)軟硬件在交換過程中具有統(tǒng)一的接口,從而實(shí)現(xiàn)信息數(shù)據(jù)的共享;另一方面,提升各功能與系統(tǒng)之間的鏈接效率,從整體上降低電氣工程自動(dòng)化系統(tǒng)的運(yùn)行成本,從而促使減少設(shè)計(jì)成本的支出,以滿足當(dāng)前時(shí)代的需求。
3.3構(gòu)建科學(xué)合理、統(tǒng)一的電氣自動(dòng)化系統(tǒng)。
構(gòu)建科學(xué)合理、統(tǒng)一的電氣自動(dòng)化系統(tǒng)是電氣工程未來發(fā)展的主要方向與趨勢(shì),以此來提升電氣工程的整體質(zhì)量。具體來說,主要包含以下幾方面:首先,積極引進(jìn)先進(jìn)的技術(shù),以先進(jìn)的電氣自動(dòng)化技術(shù)為基礎(chǔ),構(gòu)建完善的系統(tǒng),從而提升整體的管理水平;其次,引進(jìn)先進(jìn)的設(shè)計(jì)理念,完善現(xiàn)階段電氣自動(dòng)化系統(tǒng),改善其中的不合理之處,并針對(duì)現(xiàn)階段的企業(yè)不同需求進(jìn)行個(gè)性化開發(fā);最后,實(shí)現(xiàn)信息資源的有效共享,促進(jìn)我國電氣工程領(lǐng)域穩(wěn)定發(fā)展,跟上時(shí)代發(fā)展的步伐[2]。
3.4重視對(duì)電氣工程的質(zhì)量管理。
重視對(duì)電氣工程的質(zhì)量管理,可以從根本上提升電氣工程質(zhì)量與使用壽命,并保證工程使用安全。具體來說,可以從以下幾方面入手:首先,加強(qiáng)工作管理人員對(duì)電氣工程質(zhì)量管理的重視力度,認(rèn)識(shí)到管理的重要性,以此來保證工程質(zhì)量;其次,加強(qiáng)現(xiàn)階段工作人員自身的專業(yè)水平與能力,通過定期的培訓(xùn),強(qiáng)化工作人員的專業(yè)水平與技術(shù)理念,利用其良好的綜合素養(yǎng),提升質(zhì)量管理效率;然后,加強(qiáng)對(duì)電氣工程施工材料的管理,保證材料的質(zhì)量,從而提升電氣工程的質(zhì)量;最后,重視對(duì)各個(gè)施工環(huán)節(jié)的質(zhì)量管理,通過合理的監(jiān)督與管理,保證施工的規(guī)范性,并以其整體質(zhì)量為基礎(chǔ),適當(dāng)對(duì)施工進(jìn)度進(jìn)行合理的調(diào)整,以此來保證施工的整體進(jìn)度。
4結(jié)論。
綜上所述,電氣工程及其自動(dòng)化中存在的問題,直接影響電氣工程的整體質(zhì)量與效率,因此,工作人員應(yīng)積極引進(jìn)先進(jìn)的技術(shù)與設(shè)備,通過不斷的革新與發(fā)展,合理的進(jìn)行資源節(jié)約,降低成本的支出,以此來獲取可觀的經(jīng)濟(jì)效益。同時(shí),加強(qiáng)對(duì)電氣工程的研究力度,不斷提升其技術(shù)水平,從而推動(dòng)我國電氣工程及其自動(dòng)化領(lǐng)域穩(wěn)定發(fā)展。
參考文獻(xiàn):
[1]宋海南.電氣工程及其自動(dòng)化中存在的問題及解決措施[j].南方農(nóng)機(jī),20xx,47(11):134+148.
[2]閆海東,程世偉.淺析電氣工程及其自動(dòng)化中存在的問題及解決措施[j].科技創(chuàng)新與應(yīng)用,20xx(06):69.
人工神經(jīng)網(wǎng)絡(luò)論文篇十五
人工神經(jīng)網(wǎng)絡(luò)(ann)是一種用計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)模擬生物神經(jīng)網(wǎng)絡(luò)的智能神經(jīng)系統(tǒng),它是在現(xiàn)代神經(jīng)生物學(xué)研究成果的基礎(chǔ)上發(fā)展起來的,模擬人腦信息處理機(jī)制的一種網(wǎng)絡(luò)系統(tǒng),它不但具有處理數(shù)值數(shù)據(jù)的計(jì)算能力,而且還具有處理知識(shí)的學(xué)習(xí)、聯(lián)想和記憶能力。
人工神經(jīng)網(wǎng)絡(luò)模擬了大腦神經(jīng)元的組織方式,反映了人腦的一些基本功能,為研究人工智能開辟了新的途徑。它具有以下基本特征:
1.1并行分布性。
因?yàn)槿斯ど窠?jīng)網(wǎng)絡(luò)中的神經(jīng)元排列并不是雜亂無章的,往往是以一種有規(guī)律的序列排列,這種結(jié)構(gòu)非常適合并行計(jì)算。同時(shí)如果將每一個(gè)神經(jīng)元看作是一個(gè)基本的處理單元,則整個(gè)系統(tǒng)可以是一個(gè)分布式處理系統(tǒng),使得計(jì)算快速。
1.2可學(xué)習(xí)性和自適應(yīng)性。
一個(gè)相對(duì)很小的人工神經(jīng)網(wǎng)絡(luò)可存儲(chǔ)大量的專家知識(shí),并能根據(jù)學(xué)習(xí)算法,或利用指導(dǎo)系統(tǒng)模擬現(xiàn)實(shí)環(huán)境(稱為有教師學(xué)習(xí)),或?qū)斎脒M(jìn)行自適應(yīng)學(xué)習(xí)(稱為無教師學(xué)習(xí)),可以處理不確定或不知道的事情,不斷主動(dòng)學(xué)習(xí),不斷完善知識(shí)的'存儲(chǔ)。
(3)魯棒性和容錯(cuò)性。
由于采用大量的神經(jīng)元及其相互連接,具有聯(lián)想映射與聯(lián)想記憶能力,容錯(cuò)性保證網(wǎng)絡(luò)將不完整的、畸變的輸入樣本恢復(fù)成完整的原型,魯棒性使得網(wǎng)絡(luò)中的神經(jīng)元或突觸遭到破壞時(shí)網(wǎng)絡(luò)仍然具有學(xué)習(xí)和記憶能力,不會(huì)對(duì)整體系統(tǒng)帶來嚴(yán)重的影響。
1.3泛化能力。
人工神經(jīng)網(wǎng)絡(luò)是大規(guī)模的非線性系統(tǒng),提供了系統(tǒng)協(xié)同和自組織的潛力,它能充分逼近任意復(fù)雜的非線性關(guān)系。如果輸入發(fā)生較小變化,則輸出能夠保持相當(dāng)小的差距。
1.4信息綜合能力。
任何知識(shí)規(guī)則都可以通過對(duì)范例的學(xué)習(xí)存儲(chǔ)于同一個(gè)神經(jīng)網(wǎng)絡(luò)的各連接權(quán)值中,能同時(shí)處理定量和定性的信息,適用于處理復(fù)雜非線性和不確定對(duì)象。
人工神經(jīng)網(wǎng)絡(luò)論文篇十六
簡要地介紹了人工智能科技技術(shù)的基本概念。對(duì)專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、模糊理論、遺傳算法等人工智能技術(shù)的含義進(jìn)行了介紹,并對(duì)這些技術(shù)在電力系統(tǒng)中的應(yīng)用和存在問題進(jìn)行了分析。
人工智能技術(shù)(aiartificialintelligence)是一項(xiàng)將人類知識(shí)轉(zhuǎn)化為機(jī)器智能的技術(shù)。它研究的是怎樣用機(jī)器模仿人腦從事推理、規(guī)劃、設(shè)計(jì)、思考和學(xué)習(xí)等思維活動(dòng),解決需要由專家才能處理好的復(fù)雜問題。在應(yīng)用方面,以專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等最為普遍。
1.1專家系統(tǒng)(es)。
專家系統(tǒng)是利用知識(shí)和推理來解決專家不能解決的問題。傳統(tǒng)程序需要固定程序和復(fù)雜算法,輸入數(shù)據(jù)并得出結(jié)果。專家系統(tǒng)集中大量的符號(hào)處理,采用啟發(fā)式方法模擬專家的推理過程,通過推理,利用知識(shí)解決問題。它具有邏輯思維和符號(hào)處理能力,能修改原來知識(shí),適合于電力系統(tǒng)問題的分析。
1.2人工神經(jīng)網(wǎng)絡(luò)(ann)。
人工神經(jīng)網(wǎng)絡(luò)是大量處理單元廣泛互聯(lián)而成的網(wǎng)絡(luò),是一種模擬動(dòng)物神經(jīng)系統(tǒng)的技術(shù)。神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)和自學(xué)習(xí)的能力,能并行處理分布信息。電力系統(tǒng)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)可以進(jìn)行實(shí)時(shí)控制、狀態(tài)評(píng)估等。
1.3遺傳算法(ga)。
遺傳算法是一種進(jìn)化論的數(shù)學(xué)模型,借鑒自然遺傳機(jī)制的隨機(jī)搜索算法。它的主要特征是群體搜索和群體中個(gè)體之間的信息交換。該方法適用于處理傳統(tǒng)搜索方法難以解決的非線性問題。
1.4模糊邏輯(fl)。
當(dāng)輸入是離散的變量,難以建立數(shù)學(xué)模型。而模糊邏輯則成功地應(yīng)用在潮流計(jì)算、系統(tǒng)規(guī)劃、故障診斷等電力系統(tǒng)問題。
1.5混合技術(shù)。
以上各種智能控制方法各有局限性,有些甚至難以處理電力系統(tǒng)實(shí)際問題。因此需要結(jié)合各個(gè)算法的優(yōu)勢(shì),采用人工智能混合技術(shù)。其中包括:模糊專家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)模糊系統(tǒng)、神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)等技術(shù)。
2.1在電能質(zhì)量研究中的應(yīng)用。
人工智能技術(shù)可以對(duì)電壓波動(dòng)、電壓不平衡、電網(wǎng)諧波等電能質(zhì)量參數(shù)進(jìn)行在線監(jiān)測(cè)和分析。在檢測(cè)和識(shí)別電能質(zhì)量擾動(dòng)時(shí)能克服傳統(tǒng)方法的缺陷。專家系統(tǒng)隨著經(jīng)驗(yàn)的積累、擾動(dòng)類型變化而不斷擴(kuò)充和修改,便于用戶的.掌握[3]。
此外,專家系統(tǒng)和模糊邏輯可用于培訓(xùn)變電站工作人員。智能軟件可以模擬故障情形,有利于提高運(yùn)行人員的操作技能。
2.2變壓器狀態(tài)監(jiān)測(cè)與故障診斷專家系統(tǒng)。
變壓器事故原因判斷起來十分復(fù)雜。判斷過程中,必須通過內(nèi)外部的檢測(cè)等各種方法綜合分析作出判斷。變壓器監(jiān)測(cè)和診斷專家系統(tǒng)首先對(duì)油中氣體進(jìn)行分析。異常時(shí),根據(jù)異常程度結(jié)合試驗(yàn)進(jìn)行分析,決定變壓器的停運(yùn)檢查。若經(jīng)分析發(fā)現(xiàn)變壓器已嚴(yán)重故障,需立即退出運(yùn)行,則要結(jié)合電氣試驗(yàn)手段對(duì)變壓器的故障性質(zhì)及部位做出確診。
變壓器監(jiān)測(cè)和診斷專家系統(tǒng)通過診斷模塊和推理機(jī)制,能診斷出變壓器的故障并提出相應(yīng)對(duì)策,提高了變壓器內(nèi)部故障的診斷水平,實(shí)現(xiàn)了電力變壓器狀態(tài)檢修和在線監(jiān)測(cè)。
2.3人工智能技術(shù)在低壓電器中的應(yīng)用。
低壓電器的設(shè)計(jì)以實(shí)驗(yàn)為基礎(chǔ),需要分析靜態(tài)模型和動(dòng)態(tài)過程。人工智能技術(shù)能進(jìn)行分段過程的動(dòng)態(tài)設(shè)計(jì),對(duì)變化規(guī)律進(jìn)行曲線擬合并進(jìn)行人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練,建立變化規(guī)律預(yù)測(cè)模型,降低了開發(fā)成本。
低壓電器需要通過試驗(yàn)進(jìn)行性能認(rèn)證。而低壓電器的壽命很難進(jìn)行評(píng)價(jià)。模糊識(shí)別方法,從考慮產(chǎn)品性能的角度出發(fā),將動(dòng)態(tài)測(cè)得的反映性能的特性指標(biāo)作為模糊識(shí)別的變量特征值,能夠建立評(píng)估電器性能的模糊識(shí)別模型。
2.4人工智能在電力系統(tǒng)無功優(yōu)化中的應(yīng)用。
無功優(yōu)化是保證電力系統(tǒng)安全,提高運(yùn)行經(jīng)濟(jì)性的手段之一。通過無功優(yōu)化,可以使各個(gè)性能指標(biāo)達(dá)到最優(yōu)。但是無功優(yōu)化是一個(gè)復(fù)雜的非線性問題。
人工智能算法能應(yīng)用于電力系統(tǒng)無功優(yōu)化。如改進(jìn)的模擬退火算法,在求解高中壓配電網(wǎng)的無功優(yōu)化問題中,采用了記憶指導(dǎo)搜索方法來加快搜索速度。模式法進(jìn)行局部尋優(yōu)以增加獲得全局最優(yōu)解的可能性,能夠以較大概率獲得全局最優(yōu)解,提高了收斂穩(wěn)定性。禁忌搜索方法尋優(yōu)速度較快,在跳出局部最優(yōu)解方面有較大優(yōu)勢(shì)。遺傳算法在解決多變量、非線性、離散性的問題時(shí)有極大的優(yōu)勢(shì)。要求較少的求解信息的,模型簡單,適用范圍廣。
2.5人工智能在電力系統(tǒng)繼電保護(hù)中應(yīng)用。
自適應(yīng)型繼電保護(hù)裝置能地適應(yīng)各種變化,改善保護(hù)的性能,使之適應(yīng)各種運(yùn)行方式和故障類型。它能夠有效地處理各種故障信息,獲得可靠的保護(hù)。
借助于人工智能技術(shù)不但能夠提取故障信息,還能利用其自學(xué)習(xí)和自適應(yīng)能力,根據(jù)不同運(yùn)行工況,自適應(yīng)地調(diào)整保護(hù)定值和動(dòng)作特性。
2.6人工智能在抑制電力系統(tǒng)低頻振蕩的應(yīng)用。
大規(guī)模電網(wǎng)互聯(lián)易產(chǎn)生低頻振蕩,嚴(yán)重威脅著電力系統(tǒng)的安全。人工智能為電力系統(tǒng)低頻振蕩的控制提供了技術(shù)支持。神經(jīng)網(wǎng)絡(luò)、模糊理論、ga等人工智能技術(shù)應(yīng)用于facts控制器和自適應(yīng)pss的研究,為抑制電力系統(tǒng)低頻振蕩提供了新的手段。
作為一門交叉學(xué)科,人工智能將隨著其他理論的發(fā)展而進(jìn)入新的發(fā)展階段。應(yīng)用新方法解決問題,或促進(jìn)各種方法的融合,保持簡單的數(shù)學(xué)模型和全局尋優(yōu)情況下,尋求到更少的運(yùn)算量,提高算法效率,將是未來發(fā)展的趨勢(shì)。
隨著電力系統(tǒng)的發(fā)展,電力系統(tǒng)的復(fù)雜性不斷增加,不確定因素越來越多。隨著人工智能技術(shù)的不斷發(fā)展和提高,利用人工智能技術(shù)來解決電力系統(tǒng)的問題將會(huì)受到越來越多的重視。
隨著我國電力系統(tǒng)的持續(xù)穩(wěn)步發(fā)展,電力系統(tǒng)數(shù)據(jù)量不斷增加,管理上復(fù)雜程度大幅度增長,市場競爭的加大,為人工智能技術(shù)在電力系統(tǒng)的應(yīng)用提供了廣闊前景。
但人工智能技術(shù)的基本理論還不成熟,只是停留在仿真和實(shí)驗(yàn)階段。人工智能的開發(fā)是一個(gè)長期的過程,需要不斷改進(jìn)和完善,并在實(shí)際應(yīng)用中接受檢驗(yàn)。
人工神經(jīng)網(wǎng)絡(luò)論文篇十七
針對(duì)中國土地復(fù)墾起步晚,新技術(shù)與新理論應(yīng)用較少的問題,研究利用人工神經(jīng)網(wǎng)絡(luò)來輔助土地復(fù)墾的`決策.介紹了利用自組織映射神經(jīng)網(wǎng)絡(luò)的自動(dòng)分類功能對(duì)進(jìn)行礦區(qū)土地復(fù)墾條件分類,為因地制宜地采取復(fù)墾措施提供依據(jù).然后,基于bp神經(jīng)網(wǎng)絡(luò),選取評(píng)價(jià)因子,通過對(duì)已有經(jīng)驗(yàn)的學(xué)習(xí),對(duì)復(fù)墾土地適宜性進(jìn)行評(píng)價(jià),并與傳統(tǒng)的方法相比較,研究結(jié)果表明,利用人工神經(jīng)網(wǎng)絡(luò)輔助礦區(qū)土地復(fù)墾決策是可行的.
作者:張洪波胡振琪陳秋計(jì)謝宏全劉昌華作者單位:張洪波(中國礦業(yè)大學(xué)北京校區(qū),土地復(fù)墾與生態(tài)重建研究所,北京,100083;中國石油集團(tuán)工程設(shè)計(jì)有限責(zé)任公司,華北分公司,河北,任丘,062552)。
胡振琪(中國礦業(yè)大學(xué)北京校區(qū),土地復(fù)墾與生態(tài)重建研究所,北京,100083)。
陳秋計(jì),劉昌華(河南理工大學(xué),測(cè)量工程系,河南,焦作,454000)。
謝宏全(河北理工大學(xué),交通與測(cè)繪學(xué)院,河北,唐山,063009)。
刊名:遼寧工程技術(shù)大學(xué)學(xué)報(bào)isticpku英文刊名:journalofliaoningtechnicaluniversity年,卷(期):24(1)分類號(hào):x171.4關(guān)鍵詞:人工神經(jīng)網(wǎng)絡(luò)復(fù)墾土地土地復(fù)墾條件分類適宜性評(píng)價(jià)
人工神經(jīng)網(wǎng)絡(luò)論文篇十八
摘要:社會(huì)在發(fā)展、時(shí)代在進(jìn)步,信息技術(shù)水平也在不斷的提高,在此時(shí)代背景下,越來越多的技術(shù)手段開始在各個(gè)領(lǐng)域滲透和融入,而科技的進(jìn)步,使得各類的先進(jìn)技術(shù)衍生出來,其中的人工智能技術(shù)可謂是典型代表,許多的技術(shù)人員意識(shí)到人工智能技在計(jì)算機(jī)中的發(fā)展和應(yīng)用,所以對(duì)人工智能技術(shù)在計(jì)算機(jī)中的應(yīng)用和發(fā)展這一課題進(jìn)行分析具有一定的必然性,以下內(nèi)容是個(gè)人的見解。
關(guān)鍵詞:人工智能技術(shù);計(jì)算機(jī);發(fā)展;應(yīng)用;
受科學(xué)技術(shù)手段的推動(dòng)性影響,人類文明的發(fā)展步伐日漸加快,現(xiàn)階段,已經(jīng)基本步入到了信息化的時(shí)代背景下,計(jì)算機(jī)在當(dāng)下已經(jīng)是各行各業(yè)中常見的輔助工具,甚至許多行業(yè)的發(fā)展已經(jīng)視計(jì)算機(jī)技術(shù)為基本的動(dòng)力支撐,同時(shí)增加了技術(shù)應(yīng)用的要求,在此社會(huì)不斷發(fā)展的趨勢(shì)下,只有使得計(jì)算機(jī)技術(shù)逐步朝向著個(gè)性化以及智能化的方向發(fā)展,方可體現(xiàn)人工智能技術(shù)手段的作用,并為計(jì)算機(jī)技術(shù)手段的長遠(yuǎn)化發(fā)展提供相應(yīng)的保障。
人工智能一般指的是借助計(jì)算機(jī)技術(shù)手段,將其作為有效的基礎(chǔ),對(duì)人類的行為以及思想進(jìn)行模擬的綜合學(xué)科,它所涉及的行業(yè)較多,比如,心理學(xué)以及哲學(xué)等等均為典型,而后實(shí)現(xiàn)對(duì)人體觸覺或是感知方面的模擬,通常會(huì)將其安裝到機(jī)械設(shè)備之上,并使得機(jī)器更具智能化特色,借助智能化處理方式或是智能化編程等方法,逐步實(shí)現(xiàn)自動(dòng)化操作、智能化運(yùn)行,對(duì)人類難以完成的、高難度的、威脅較大的工作進(jìn)行有效處理,極大的提高工作效率,進(jìn)而保證人們的人身財(cái)產(chǎn)安全。
現(xiàn)階段,人工智能技術(shù)已經(jīng)初步取得了一定的成就,相關(guān)的專家學(xué)者在研究和探討以后,也發(fā)現(xiàn)了人工神經(jīng)網(wǎng)絡(luò)體系構(gòu)建的發(fā)展方向,希望借此完成工程項(xiàng)目設(shè)計(jì)工作,實(shí)現(xiàn)軟件系統(tǒng)和智能化模塊的有機(jī)結(jié)合,對(duì)軟件的性能進(jìn)行改良,進(jìn)而符合用戶的實(shí)際需求,在基本達(dá)到了人工智能的目標(biāo)以后,還需要對(duì)用戶界面進(jìn)行優(yōu)化和改良,最終為人工智能技術(shù)的發(fā)展和更新提供更多的保障。
(一)網(wǎng)絡(luò)安全方面的應(yīng)用。
最近幾年來,人工智能技術(shù)的運(yùn)用已經(jīng)成為未來幾年來許多領(lǐng)域的發(fā)展趨向,它的利用將計(jì)算機(jī)網(wǎng)絡(luò)的優(yōu)勢(shì)全方位的體現(xiàn),值得一提的是,它在計(jì)算機(jī)網(wǎng)絡(luò)安全方面所占據(jù)的地位在日漸提高,同時(shí)其應(yīng)用價(jià)值也不斷凸顯。
而后,入侵檢測(cè)也是計(jì)算網(wǎng)絡(luò)安全工作落實(shí)的主要工作,這一過程中,防火墻可發(fā)揮自身的作用,這一過程中它的運(yùn)行效果,將會(huì)給整體的系統(tǒng)運(yùn)作安全性帶來極大的影響,可通過數(shù)據(jù)整合、搜集的方式,將有價(jià)值的參數(shù)呈現(xiàn)給用戶,通過郵件的形式發(fā)送給用戶,隨著時(shí)間的推移,郵件數(shù)量也會(huì)不斷的增加。經(jīng)過筆者的分析和探討,建議將智能型垃圾郵件系統(tǒng)安裝到用戶的系統(tǒng)之中,而后再實(shí)施風(fēng)險(xiǎn)檢測(cè),及時(shí)告知用戶相關(guān)的風(fēng)險(xiǎn)信息,并給予一定的提示,引導(dǎo)用戶妥善處理垃圾信息。
(二)企業(yè)管理方面的應(yīng)用。
現(xiàn)階段,人工智能技術(shù)手段已經(jīng)被越來越多的企業(yè)管理者所認(rèn)知,比如,自動(dòng)報(bào)警系統(tǒng)和監(jiān)控系統(tǒng)的應(yīng)用就為典型代表,它們的運(yùn)用,利于企業(yè)實(shí)現(xiàn)智能化的管理目標(biāo),為企業(yè)的內(nèi)部運(yùn)作營造安全的氛圍和環(huán)境,此外,還可以一定程度的減少企業(yè)的運(yùn)作成本,逐步達(dá)到資源配置和優(yōu)化的效果,將企業(yè)的運(yùn)營和發(fā)展目標(biāo)落實(shí)到實(shí)處,體現(xiàn)出企業(yè)管理的智能化和現(xiàn)代化特色。
(三)教學(xué)領(lǐng)域的應(yīng)用。
隨著新課程改革的推進(jìn),使得標(biāo)準(zhǔn)化教學(xué)體制也在日趨深化,逐步實(shí)現(xiàn)了計(jì)算機(jī)技術(shù)和教學(xué)工作的有機(jī)融合,人工智能計(jì)算機(jī)輔助教學(xué)系統(tǒng)的運(yùn)用體現(xiàn)了極大的應(yīng)用優(yōu)勢(shì),為傳統(tǒng)教學(xué)模式的優(yōu)化和改革注入了新的活力,可借此方法,完成教學(xué)方法和教學(xué)內(nèi)容的表達(dá),進(jìn)而相應(yīng)的的提高教學(xué)效率,確保教學(xué)質(zhì)量。
此外,引入人工智能技術(shù)的過程中,也需要重視知識(shí)庫的運(yùn)用,將其作為教學(xué)中有效的輔助工具,而后把教學(xué)中的要點(diǎn)以及相關(guān)定義等融入到知識(shí)庫職之中,教師的在落實(shí)教學(xué)工作之時(shí),可對(duì)知識(shí)庫之內(nèi)的理論知識(shí)加進(jìn)行準(zhǔn)確推理,為學(xué)生呈現(xiàn)更加直觀的推理過程和運(yùn)算過程,得出推理后的結(jié)果。從教學(xué)領(lǐng)域日后的發(fā)展角度來講,人工智能技術(shù)理念的引入,可謂是以此教學(xué)模式的革新,也是突破傳統(tǒng)教學(xué)模式桎梏的有效途徑。
(四)家居行業(yè)的應(yīng)用。
當(dāng)前,人們的生活質(zhì)量和生活水平日漸提高,從而自然而然的增加了對(duì)于住房家居的應(yīng)用需要,在此社會(huì)發(fā)展形勢(shì)之下,可將人工智能技術(shù)手段應(yīng)用到家居生活中,盡可能滿人們的日常生活需要,比如,運(yùn)用人工智能技術(shù),對(duì)門窗的閉合進(jìn)行有效控制,或是對(duì)家居環(huán)境進(jìn)行調(diào)整,營造良好的生活氛圍。
三、結(jié)語。
綜上所述,在此信息技術(shù)發(fā)展如此迅猛的時(shí)代背景下,人工智能技術(shù)手段的運(yùn)用被許多行業(yè)所認(rèn)識(shí)和關(guān)注,此項(xiàng)技術(shù)是一項(xiàng)典型的新型技術(shù)手段,它的應(yīng)用體現(xiàn)了極大的優(yōu)勢(shì),與域外發(fā)達(dá)國家相比較,我國的人工智能技術(shù)水平仍舊不足,但是,其發(fā)展速度卻相對(duì)較快,在我國的諸多行業(yè)中得到了廣泛運(yùn)用,它的未來發(fā)展前景相對(duì)較佳,值得大力推廣。
參考文獻(xiàn)。
[2]黃鑫。分析計(jì)算機(jī)人工智能識(shí)別技術(shù)的應(yīng)用瓶頸[j].數(shù)字技術(shù)與應(yīng)用,20xx,26(7):244.
人工神經(jīng)網(wǎng)絡(luò)論文篇十九
人工神經(jīng)網(wǎng)絡(luò)(ann)是一種用計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)模擬生物神經(jīng)網(wǎng)絡(luò)的智能神經(jīng)系統(tǒng),它是在現(xiàn)代神經(jīng)生物學(xué)研究成果的基礎(chǔ)上發(fā)展起來的,模擬人腦信息處理機(jī)制的一種網(wǎng)絡(luò)系統(tǒng),它不但具有處理數(shù)值數(shù)據(jù)的計(jì)算能力,而且還具有處理知識(shí)的學(xué)習(xí)、聯(lián)想和記憶能力。
人工神經(jīng)網(wǎng)絡(luò)模擬了大腦神經(jīng)元的組織方式,反映了人腦的一些基本功能,為研究人工智能開辟了新的途徑。它具有以下基本特征:
1.1并行分布性。
因?yàn)槿斯ど窠?jīng)網(wǎng)絡(luò)中的神經(jīng)元排列并不是雜亂無章的,往往是以一種有規(guī)律的序列排列,這種結(jié)構(gòu)非常適合并行計(jì)算。同時(shí)如果將每一個(gè)神經(jīng)元看作是一個(gè)基本的處理單元,則整個(gè)系統(tǒng)可以是一個(gè)分布式處理系統(tǒng),使得計(jì)算快速。
1.2可學(xué)習(xí)性和自適應(yīng)性。
一個(gè)相對(duì)很小的人工神經(jīng)網(wǎng)絡(luò)可存儲(chǔ)大量的專家知識(shí),并能根據(jù)學(xué)習(xí)算法,或利用指導(dǎo)系統(tǒng)模擬現(xiàn)實(shí)環(huán)境(稱為有教師學(xué)習(xí)),或?qū)斎脒M(jìn)行自適應(yīng)學(xué)習(xí)(稱為無教師學(xué)習(xí)),可以處理不確定或不知道的事情,不斷主動(dòng)學(xué)習(xí),不斷完善知識(shí)的'存儲(chǔ)。
(3)魯棒性和容錯(cuò)性。
由于采用大量的神經(jīng)元及其相互連接,具有聯(lián)想映射與聯(lián)想記憶能力,容錯(cuò)性保證網(wǎng)絡(luò)將不完整的、畸變的輸入樣本恢復(fù)成完整的原型,魯棒性使得網(wǎng)絡(luò)中的神經(jīng)元或突觸遭到破壞時(shí)網(wǎng)絡(luò)仍然具有學(xué)習(xí)和記憶能力,不會(huì)對(duì)整體系統(tǒng)帶來嚴(yán)重的影響。
1.3泛化能力。
人工神經(jīng)網(wǎng)絡(luò)是大規(guī)模的非線性系統(tǒng),提供了系統(tǒng)協(xié)同和自組織的潛力,它能充分逼近任意復(fù)雜的非線性關(guān)系。如果輸入發(fā)生較小變化,則輸出能夠保持相當(dāng)小的差距。
1.4信息綜合能力。
任何知識(shí)規(guī)則都可以通過對(duì)范例的學(xué)習(xí)存儲(chǔ)于同一個(gè)神經(jīng)網(wǎng)絡(luò)的各連接權(quán)值中,能同時(shí)處理定量和定性的信息,適用于處理復(fù)雜非線性和不確定對(duì)象。
將本文的word文檔下載到電腦,方便收藏和打印。
【本文地址:http://aiweibaby.com/zuowen/17532020.html】