2023年一元二次方程教案第一課時(通用13篇)

格式:DOC 上傳日期:2023-12-20 10:56:02
2023年一元二次方程教案第一課時(通用13篇)
時間:2023-12-20 10:56:02     小編:筆舞

作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那么我們該如何寫一篇較為完美的教案呢?這里我給大家分享一些最新的教案范文,方便大家學(xué)習(xí)。

一元二次方程教案第一課時篇一

教材分析:1.本節(jié)以生活中的實(shí)際問題為背景,引出一元二次方程的概念,讓學(xué)生掌握一元二次方程的特點(diǎn),歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學(xué)方程、一元一次方程、整式、方程的解的基礎(chǔ)上進(jìn)行學(xué)習(xí),也是后面學(xué)習(xí)二次函數(shù)的一個基礎(chǔ)。

2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。

3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想。

學(xué)情分析:1.授課班級學(xué)生基礎(chǔ)較差,學(xué)生成績參差不齊,差生較多。教學(xué)中應(yīng)給予充分思考的時間,注意講練結(jié)合,以學(xué)生為本,體現(xiàn)生本課堂的理念。

2.該班級學(xué)生在平時訓(xùn)練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,從而充分調(diào)動學(xué)生主動性和積極性,使課堂氣氛活躍,讓學(xué)生在愉快的環(huán)境中學(xué)習(xí)。

3.作為該班的班主任,同時又擔(dān)任該班的數(shù)學(xué)教學(xué),對學(xué)生學(xué)習(xí)情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學(xué)生,充分調(diào)動學(xué)生的積極性,在練習(xí)題的設(shè)計上要針對學(xué)生的差異采取分層設(shè)計的方法,著重加強(qiáng)對學(xué)生的雙基訓(xùn)練。

教學(xué)目標(biāo):

一知識與技能:

1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。

2.掌握一元二次方程的一般形式,正確認(rèn)識二次項系數(shù)、一次項系數(shù)及常數(shù)項.

二過程與方法:

1.引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,組織學(xué)生討論,讓學(xué)生類比、抽象出一元二次方程的概念。

2.培養(yǎng)獨(dú)立思考,合作交流學(xué),分析問題,解決問題的能力。

三情感態(tài)度與價值觀:

1.培養(yǎng)學(xué)生主動探究知識、自主學(xué)習(xí)和合作交流的意識.

2.激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會學(xué)數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識.

3.讓學(xué)生體會數(shù)學(xué)來源于生活,又服務(wù)于生活的基本思想,從而意識到數(shù)學(xué)在生活中的作用。

教學(xué)重點(diǎn):一元二次方程的概念及一般形式,利用概念解決實(shí)際問題。

教學(xué)難點(diǎn):1.由實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化過程.

2.正確識別一般式中的“項”及“系數(shù)”.

3.一元二次方程的特點(diǎn),如何判斷一個方程是一元二次方程。

教學(xué)過程:

一、創(chuàng)設(shè)情境,引入新課

1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計劃無公害蔬菜的產(chǎn)量比翻一番,要實(shí)現(xiàn)這一目標(biāo),和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)

(1)用代數(shù)式表示20的產(chǎn)量;

(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?

學(xué)生思考交流得出方程a(1+x)2=2a

整理得,x2+2x-1=0…………①

2.通過幻燈片引入情境,提出問題:

這個問題的相等關(guān)系是什么?

320×200-(320x+2×200x-2x2)=57000

整理得x2-36x+35=0

誰還能換一種思路考慮這個問題?

把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?

(320-2x)(200-x)=57000

整理得x2-36x+35=0…………②

比較一下,哪種方法更巧妙?

一元二次方程教案第一課時篇二

【知識與技能】

理解并掌握一元二次方程求根公式的推導(dǎo)過程,能正確、熟練地運(yùn)用公式法解一元二次方程。

【過程與方法】

經(jīng)歷探究求根公式的過程,發(fā)展合情推理能力,提高運(yùn)算能力并養(yǎng)成良好的運(yùn)算習(xí)慣。

【情感、態(tài)度與價值觀】

通過公式法解一元二次方程,感受解法的多樣性,在學(xué)習(xí)活動中獲取成功的體驗(yàn)。

【教學(xué)重點(diǎn)】

用公式法解一元二次方程。

【教學(xué)難點(diǎn)】

一元二次方程求根公式的推導(dǎo)。

(一)引入新課

復(fù)習(xí)回顧:用配方法解一元二次方程。

配方,得

(四)小結(jié)作業(yè)

作業(yè):課后練習(xí)題,試著用多種方法解答。

四、板書設(shè)計

一元二次方程教案第一課時篇三

1、知識與能力目標(biāo):要求學(xué)生會根據(jù)實(shí)際問題列出一元二次方程,體會方程的模型思想,培養(yǎng)學(xué)生歸納、分析的能力。

2、過程與方法目標(biāo):引導(dǎo)學(xué)生分析實(shí)際問題中的數(shù)量關(guān)系,回顧一元一次方程的概念,組織學(xué)生討論,讓學(xué)生自己抽象出一元二次方程的概念。

3.、情感、態(tài)度與價值觀:通過數(shù)學(xué)建模的分析、思考過程,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,體會做數(shù)學(xué)的快樂,培養(yǎng)用數(shù)學(xué)的意識并與校園綠化相結(jié)合。

教學(xué)重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):通過實(shí)際問題模型建立一元二次方程的概念,認(rèn)識一元二次方程一般形式.

2。難點(diǎn):通過實(shí)際問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。

教學(xué)過程:

(一)創(chuàng)設(shè)情景,導(dǎo)入新課

分析:設(shè)長方形綠地的寬為x米,則列方程,

整理可得。

分析:設(shè)長方形綠地的寬為x米,則列方程,

整理可得。

【設(shè)計意圖】因?yàn)閿?shù)學(xué)來源與生活,所以以學(xué)生的實(shí)際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。同時幫助學(xué)生從實(shí)際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的,從而激發(fā)學(xué)生的求知欲望,順利地進(jìn)入新課,并激發(fā)學(xué)生環(huán)保意識。

一元二次方程教案第一課時篇四

知識技能使學(xué)生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟(jì)方面的問題.

提高將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力以及用數(shù)學(xué)的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.

解決問題通過列一元二次方程的方法解決日常生活及生產(chǎn)實(shí)際中遇到的有關(guān)面積、體積方面和經(jīng)濟(jì)方面的問題.

通過探究性學(xué)習(xí),抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學(xué)美.

審題,從文字語言中挖掘有價值的信息.

會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟(jì)方面的問題.

師生共同回憶

列方程解應(yīng)用題的步驟:

(1)審題;(2)設(shè)未知數(shù);

(3)列方程;(4)求解;

(5)檢驗(yàn);(6)答.

教師活動:引導(dǎo)學(xué)生讀題,找到題目中的關(guān)鍵語句.

學(xué)生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.

教師活動:用多媒體演示分析,解題方法.

如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的.小正方形的邊長.

課堂練習(xí):將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的,求這個正方形的邊長.

學(xué)生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.

教師活動:用多媒體幫助學(xué)生分析試題.提示學(xué)生檢驗(yàn)解的合理性.

復(fù)習(xí)列方程解應(yīng)用題的一般步驟.

本題為后面解決有關(guān)面積、體積方面問題做鋪墊.

提高學(xué)生的審題能力.使學(xué)生會解決有關(guān)面積的問題.

解決體積問題的問題

培養(yǎng)學(xué)生用數(shù)學(xué)的意識以及滲透轉(zhuǎn)化和方程的思想方法.

強(qiáng)調(diào)對方程的解進(jìn)行雙重檢驗(yàn).

小結(jié)利用一元二次方程解決實(shí)際問題時,要注意通過實(shí)際要求檢驗(yàn)根的合理性,要注意審題能力的培養(yǎng).

作業(yè)課本第43頁習(xí)題2

課后隨筆(課堂設(shè)計理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

一元二次方程教案第一課時篇五

(1)理解一元二次方程的概念

(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

(2)會用因式分解法解一元二次方程

【教學(xué)重點(diǎn)】一元二次方程的.概念、一元二次方程的一般形式

【教學(xué)難點(diǎn)】因式分解法解一元二次方程

【教學(xué)過程】

(一)創(chuàng)設(shè)情景,引入新課

由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)

2:一元二次方程的一般形式(形如ax+bx+c=0)

任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零

3:講解例子

4:利用因式分解法解一元二次方程

5:講解例子

6:一般步驟

(三)小結(jié)

(四)布置作業(yè)

一元二次方程教案第一課時篇六

(1)理解一元二次方程的概念

(2)掌握一元二次方程的.一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

(2)會用因式分解法解一元二次方程

因式分解法解一元二次方程

(一)創(chuàng)設(shè)情景,引入新課

由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)

2:一元二次方程的一般形式(形如ax+bx+c=0)

任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零

3:講解例子

4:利用因式分解法解一元二次方程

5:講解例子

6:一般步驟

(三)小結(jié)

(四)布置作業(yè)

一元二次方程教案第一課時篇七

一元二次方程概念及一元二次方程一般式及有關(guān)概念、

1、通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義、

2、一元二次方程的一般形式及其有關(guān)概念、

3、解決一些概念性的題目、

4、態(tài)度、情感、價值觀

4、通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情、

一、復(fù)習(xí)引入

學(xué)生活動:列方程、

問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”

整理、化簡,得:__________、

問題(2)如圖,如果,那么點(diǎn)c叫做線段ab的黃金分割點(diǎn)、

整理,得:________、

老師點(diǎn)評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理、

二、探索新知

學(xué)生活動:請口答下面問題、

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的'多項式的規(guī)定,它們最高次數(shù)是幾次?

(3)有等號嗎?或與以前多項式一樣只有式子?

解:去括號,得:

移項,得:4x2-26x+22=0

其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22、

解:去括號,得:

x2+2x+1+x2-4=1

移項,合并得:2x2+2x-4=0

其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4、

三、鞏固練習(xí)

教材p32練習(xí)1、2

四、應(yīng)用拓展

分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可、

證明:2-8+17=(-4)2+1

∵(-4)2≥0

∴(-4)2+10,即(-4)2+1≠0

∴不論取何值,該方程都是一元二次方程、

五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評)

本節(jié)課要掌握:

六、布置作業(yè)

一元二次方程教案第一課時篇八

(1)理解一元二次方程的概念

(2)掌握一元二次方程的一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。

(2)會用因式分解法解一元二次方程

【教學(xué)重點(diǎn)】一元二次方程的概念、一元二次方程的一般形式

【教學(xué)難點(diǎn)】因式分解法解一元二次方程

【教學(xué)過程】

(一)創(chuàng)設(shè)情景,引入新課

由學(xué)生說出這幾個方程的共同特征,從而引出一元二次方程的概念。

(二)新授

1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)

2:一元二次方程的一般形式(形如ax+bx+c=0)

3:講解例子

4:利用因式分解法解一元二次方程

5:講解例子

6:一般步驟

(三)小結(jié)

(四)布置作業(yè)

一元二次方程教案第一課時篇九

1、構(gòu)建本章的部分知識框圖。

2、復(fù)習(xí)一元二次方程的概念、解法。

1、通過對本章方程解法的復(fù)習(xí),進(jìn)一步提高學(xué)生的運(yùn)算能力。

2、在解一元二次方程的過程中體會轉(zhuǎn)化等數(shù)學(xué)思想。

1、一元二次方程的概念

2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;

解法的靈活選擇;例4和例5的解法。

導(dǎo)入新課

問題:本章中,我們有哪些收獲?(教師點(diǎn)撥引導(dǎo)學(xué)生構(gòu)建本章部分知識框圖)

共同探究

例1

例2

(1)

解法及其關(guān)系

(2)

根的形式

x1=3

x2=4

(3)熟悉解法

例3用四種解法分別解此方程

(4)方法優(yōu)選

例4

例5

解關(guān)于x的方程

錯誤解法

正確解法

提煉思想

我們有哪些收獲?解方程的思想方法是什么?

鞏固提高

一元二次方程教案第一課時篇十

1、教材的地位和作用

一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實(shí)數(shù)與代數(shù)式的運(yùn)算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。

2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)

九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實(shí)際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。

知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。

德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點(diǎn)。

3、重點(diǎn),難點(diǎn)及確定重難點(diǎn)的依據(jù)

“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點(diǎn)是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點(diǎn)。

在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。

教學(xué)中,我運(yùn)用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。

采用投影儀

1、新課導(dǎo)入:

(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)

(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))

課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實(shí)際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)

設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程

一元二次方程教案第一課時篇十一

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學(xué)重點(diǎn):

1.體會方程與函數(shù)之間的聯(lián)系。

2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

教學(xué)難點(diǎn):

1.探索方程與函數(shù)之間關(guān)系的過程。

2.理解二次函數(shù)與x軸交點(diǎn)的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。

啟發(fā)引導(dǎo)合作交流

課件

計算機(jī)、實(shí)物投影。

檢查預(yù)習(xí)引出課題

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解。

教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。

學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。

這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。

一元二次方程教案第一課時篇十二

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

教學(xué)重點(diǎn)和難點(diǎn):

重點(diǎn):一元二次方程的概念和它的一般形式。

難點(diǎn):對一元二次方程的一般形式的正確理解及其各項系數(shù)的確定。

教學(xué)建議:

1.教材分析:

1)知識結(jié)構(gòu):本小節(jié)首先通過實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點(diǎn)、難點(diǎn)分析

理解一元二次方程的定義:

是一元二次方程的重要組成部分。方程,只有當(dāng)時,才叫做一元二次方程。如果且,它就是一元二次方程了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:

(1)一元二次方程的條件是確定的,如方程(),把它化成一般形式為,由于,所以,符合一元二次方程的定義。

(2)條件是用“關(guān)于的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時題中隱含了的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數(shù)的項,且出現(xiàn)“關(guān)于的方程”這樣的語句,就要對方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時,它是一元一次方程;當(dāng)時,它是一元二次方程,解題時就會有不同的結(jié)果。

一元二次方程教案第一課時篇十三

1、知識與技能目標(biāo):認(rèn)識一元二次方程,并能分析簡單問題中的數(shù)量關(guān)系列出一元二次方程。

2、過程與方法:學(xué)生通過觀察與模仿,建立起對一元二次方程的感性認(rèn)識,獲得對代數(shù)式的初步經(jīng)驗(yàn),鍛煉抽象思維能力。

3、情感態(tài)度與價值觀:學(xué)生在獨(dú)立思考的過程中,能將生活中的經(jīng)驗(yàn)與所學(xué)的知識結(jié)合起來,形成實(shí)事求是的態(tài)度以及進(jìn)行質(zhì)疑和獨(dú)立思考的習(xí)慣。

重點(diǎn):理解一元二次方程的意義,能根據(jù)題目列出一元二次方程,會將不規(guī)則的一元二次方程化成標(biāo)準(zhǔn)的一元二次方程。

難點(diǎn):找對題目中的數(shù)量關(guān)系從而列出一元二次方程。

(一)導(dǎo)入新課

生:老師,這是雷鋒叔叔。

生:是的老師。

生:想。

師:同學(xué)們也都很樂于助人,好那我們看一看這個問題是什么,然后帶著這個問題開始我們今天的學(xué)習(xí)一元二次方程。

(二)新課教學(xué)

師:我們來看到這個題目,要設(shè)計一座2m高的人體雕像,使雕像的上部(腰以上)與下部(腰以下)的高度比,等于下部與全部(全身)的高度比,雕像的下部應(yīng)設(shè)計為全高?同學(xué)們用ac來表示上部,bc來表示下部先簡單列一下這個比例關(guān)系,待會老師下去看看同學(xué)們的式子。

(下去巡視)

(三)小結(jié)作業(yè)

師:今天大家學(xué)習(xí)了一元二次方程,同學(xué)們回去還要加強(qiáng)鞏固,做練習(xí)題的1、2(2)題。

四、板書設(shè)計

五、教學(xué)反思

【本文地址:http://www.aiweibaby.com/zuowen/19721936.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔