教案包括教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)過(guò)程等要素。編寫教案時(shí)要充分了解學(xué)生的背景知識(shí)和學(xué)習(xí)需求。以下是小編為大家收集的教案范例,供大家參考學(xué)習(xí)。
函數(shù)的奇偶性教案人教版篇一
《函數(shù)的奇偶性》這節(jié)課的教學(xué)模式是采用循序漸進(jìn),由簡(jiǎn)單的問(wèn)題引入,然后在教師的引導(dǎo)下,探索結(jié)論,最后,在教師的指導(dǎo)下,對(duì)所學(xué)的實(shí)際結(jié)論進(jìn)行學(xué)生的實(shí)際應(yīng)用。
一、這種教學(xué)模式的教學(xué)程序是:
(一)實(shí)際練習(xí)引入課題,并能去發(fā)現(xiàn)生活中的相關(guān)信息,引起學(xué)生的興趣。
(二)看圖,具體引入函數(shù)進(jìn)行觀察探索,包括圖像觀察,自變量的變化,函數(shù)值的變化規(guī)律。
(三)明確這是函數(shù)的一種性質(zhì),明確定義,并強(qiáng)調(diào)定義中的注意事項(xiàng),怎樣理解定義中的規(guī)定。
(四)教師具體以例題進(jìn)行示范,學(xué)生們領(lǐng)會(huì)對(duì)函數(shù)奇偶性的認(rèn)識(shí),并怎樣進(jìn)行判斷。
(五)同學(xué)們?cè)陬I(lǐng)會(huì)的基礎(chǔ)上,進(jìn)行實(shí)際訓(xùn)練,達(dá)到對(duì)知識(shí)的理解和應(yīng)用。
二、這種教學(xué)模式的優(yōu)勢(shì)是:循序漸進(jìn),學(xué)生能夠?qū)嶋H參與,在教學(xué)中體現(xiàn)和諧,教師的導(dǎo)和學(xué)生的練保證教學(xué)的效果。
這種教學(xué)模式的`缺點(diǎn)與解決方法是:
還缺乏對(duì)學(xué)生更高層次的參與的調(diào)動(dòng),尤其是職業(yè)中學(xué)中部分在初中已經(jīng)放棄學(xué)習(xí)的同學(xué)的參與問(wèn)題。對(duì)配套練習(xí)要進(jìn)一步細(xì)化,要對(duì)每一個(gè)知識(shí)點(diǎn)都要精心設(shè)計(jì)相應(yīng)知識(shí)點(diǎn)的訓(xùn)練,圖像的認(rèn)識(shí)上,要加大同學(xué)們對(duì)生活的感知和相關(guān)軟件的使用,并能在電腦上實(shí)際體驗(yàn)函數(shù)圖像的對(duì)稱情況。
函數(shù)的奇偶性教案人教版篇二
在本節(jié)課教學(xué)過(guò)程中,我讓學(xué)生通過(guò)圖象直觀獲得函數(shù)奇偶性的認(rèn)識(shí),然后利用表格探究數(shù)量變化特征,通過(guò)代數(shù)運(yùn)算,驗(yàn)證發(fā)現(xiàn)的數(shù)量特征對(duì)定義域中的”任意”值都成立,最后在這個(gè)基礎(chǔ)上建立奇偶函數(shù)的概念。
在本節(jié)課的教學(xué)中我還要注意到以下幾個(gè)方面的問(wèn)題:
1.幻燈片的設(shè)計(jì)。
幻燈片的使用在一定程度上很好的輔助我的教學(xué)活動(dòng),但是數(shù)學(xué)學(xué)科中應(yīng)注意到幻燈片的設(shè)計(jì),在出現(xiàn)某些字或者數(shù)字時(shí)應(yīng)直接出現(xiàn),而不要設(shè)計(jì)成動(dòng)畫的形式,以免學(xué)生分散注意力。
2.學(xué)生練習(xí)。
在教學(xué)過(guò)程中應(yīng)多注意學(xué)生的活動(dòng),由單一的問(wèn)答式轉(zhuǎn)化為多方位的`考察,可以采用學(xué)生板演或者把學(xué)生練習(xí)投影到屏幕上讓全班學(xué)生糾正等方式,更好的考察學(xué)生掌握情況。
3.例題書寫。
在數(shù)學(xué)教學(xué)中我們都要對(duì)例題的解題過(guò)程進(jìn)行講解,并書寫解題過(guò)程,以便讓學(xué)生更好的模仿。在書寫解題過(guò)程或定義時(shí)要認(rèn)真板書,保證字跡清楚,便于學(xué)生仿照。
4.語(yǔ)言組織。
在講授過(guò)程中還要注意到說(shuō)話語(yǔ)速,語(yǔ)言組織等講授技巧,應(yīng)該用平緩的語(yǔ)氣講授,語(yǔ)言描述要簡(jiǎn)練易懂,不能拖泥帶水。
5.教學(xué)環(huán)節(jié)的完整。
在授課過(guò)程中要注意到教學(xué)環(huán)節(jié)設(shè)計(jì),我們的教學(xué)過(guò)程有復(fù)習(xí)引入、講授新課、例題講解、學(xué)生練習(xí)、課時(shí)小結(jié)、布置作業(yè)等幾個(gè)重要的環(huán)節(jié),有時(shí)候可能因?yàn)榫o張等各種因素往往忽略小細(xì)節(jié),遺漏其中的某一環(huán)節(jié),造成教學(xué)設(shè)計(jì)不完善。在以后的教學(xué)過(guò)程中要注意這些環(huán)節(jié)。
6.教案設(shè)計(jì)的完整。
在本節(jié)課教學(xué)中我因?yàn)榭紤]到有幻燈片而沒(méi)有在教案中設(shè)計(jì)“板書設(shè)計(jì)”這個(gè)環(huán)節(jié),但是在授課過(guò)程中又用到了板書,所以一定要設(shè)計(jì)“板書設(shè)計(jì)”,以保證教案的完整性。
以上是我對(duì)這節(jié)課以后的教學(xué)反思,還有很多地方做的還不完善,我要在以后的教學(xué)中努力改進(jìn)這些錯(cuò)誤,以便更好的適應(yīng)教學(xué),努力使自己的教學(xué)更上一層樓。
函數(shù)的奇偶性教案人教版篇三
今天我說(shuō)課的課題是高中數(shù)學(xué)人教a版必修一第一章第三節(jié)函數(shù)的基本性質(zhì)中的函數(shù)的奇偶性,下面我將從教材分析,教法、學(xué)法分析,教學(xué)過(guò)程,教輔手段,板書設(shè)計(jì)等方面對(duì)本課時(shí)的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)明。
(一)教材特點(diǎn)、教材的地位與作用。
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。
(二)重點(diǎn)、難點(diǎn)。
1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。
2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標(biāo)。
1、知識(shí)與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過(guò)程:引導(dǎo)學(xué)生通過(guò)觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。
3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過(guò)程中,使學(xué)生體會(huì)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
1.教學(xué)方法:?jiǎn)l(fā)引導(dǎo)式。
結(jié)合本章實(shí)際,教材簡(jiǎn)單易懂,重在應(yīng)用、解決實(shí)際問(wèn)題,本節(jié)課準(zhǔn)備采用"引導(dǎo)發(fā)現(xiàn)法"進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識(shí)的方法和樂(lè)趣,在解決問(wèn)題的過(guò)程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu).使用多媒體輔助教學(xué),突出了知識(shí)的產(chǎn)生過(guò)程,又增加了課堂的趣味性.
2.學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會(huì)學(xué)習(xí).
為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識(shí)應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對(duì)稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開(kāi),觀察坐標(biāo)系中的'圖形。
問(wèn)題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
以y軸為折痕將紙對(duì)折,然后以x軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的痕跡,然后將紙展開(kāi).觀察坐標(biāo)喜之中的圖形:
問(wèn)題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對(duì)稱:軸對(duì)稱和中心對(duì)稱展開(kāi)研究.
思考:請(qǐng)同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱性如何。
借助課件演示,學(xué)生會(huì)回答自變量互為相反數(shù),函數(shù)值相等.接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類似的情況借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示.
思考:由于對(duì)任一x,必須有一-x與之對(duì)應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱.根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書:
提出新問(wèn)題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢(同時(shí)打出y=1/x的圖象讓學(xué)生觀察研究)。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強(qiáng)調(diào)注意點(diǎn):"定義域關(guān)于原點(diǎn)對(duì)稱"的條件必不可少.
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識(shí),歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱。
(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問(wèn)題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對(duì)稱,二是定義域雖關(guān)于原點(diǎn)對(duì)稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識(shí)中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
函數(shù)f(x)是奇函數(shù)=圖象關(guān)于原點(diǎn)對(duì)稱。
函數(shù)f(x)是偶函數(shù)=圖象關(guān)于y軸對(duì)稱。
給出例2:書p63例3,再進(jìn)行當(dāng)堂鞏固,
1,書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對(duì)形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè)。
課本p39習(xí)題1.3(a組)第6題,b組第3。
函數(shù)的奇偶性教案人教版篇四
1。了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法。
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性。
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程。
2。通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想。
3。通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。
一、知識(shí)結(jié)構(gòu)。
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析。
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí)。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),掌握單調(diào)性的證明。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的'難點(diǎn)。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái)。在這個(gè)過(guò)程當(dāng)中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái)。
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來(lái)。經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
函數(shù)的奇偶性教案人教版篇五
【過(guò)程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題.
【情感態(tài)度與價(jià)值觀】。
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
二、教學(xué)重難點(diǎn)。
【重點(diǎn)】。
【難點(diǎn)】。
三、教學(xué)過(guò)程。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;。
(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.
(二)新課教學(xué)。
像上面實(shí)踐操作1中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)即是奇函數(shù).
(1)偶函數(shù)(evenfunction)。
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的'一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
3.典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;。
2確定f(-x)與f(x)的關(guān)系;。
3作出相應(yīng)結(jié)論:
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
(三)鞏固提高。
1.教材p46習(xí)題1.3b組每1題。
解:(略)。
說(shuō)明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
(四)小結(jié)作業(yè)。
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).
課本p46習(xí)題1.3(a組)第9、10題,b組第2題.
四、板書設(shè)計(jì)。
一、偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
二、奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
函數(shù)的奇偶性教案人教版篇六
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。
(二)重點(diǎn)、難點(diǎn)。
1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。
2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。
(三)教學(xué)目標(biāo)。
1、知識(shí)與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過(guò)程:引導(dǎo)學(xué)生通過(guò)觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡(jiǎn)單的問(wèn)題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。
3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過(guò)程中,使學(xué)生體會(huì)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析。
1、教學(xué)方法:?jiǎn)l(fā)引導(dǎo)式。
結(jié)合本章實(shí)際,教材簡(jiǎn)單易懂,重在應(yīng)用、解決實(shí)際問(wèn)題,本節(jié)課準(zhǔn)備采用“引導(dǎo)發(fā)現(xiàn)法”進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識(shí)的方法和樂(lè)趣,在解決問(wèn)題的過(guò)程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識(shí)的產(chǎn)生過(guò)程,又增加了課堂的趣味性。
2、學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會(huì)學(xué)習(xí)。
三、教輔手段。
四、教學(xué)過(guò)程。
為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識(shí)應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
(一)設(shè)疑導(dǎo)入,觀圖激趣。
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花。
學(xué)生舉例生活中的對(duì)稱現(xiàn)象。
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開(kāi),觀察坐標(biāo)系中的圖形。
問(wèn)題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
以y軸為折痕將紙對(duì)折,然后以x軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的.痕跡,然后將紙展開(kāi)。觀察坐標(biāo)喜之中的圖形:
問(wèn)題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)。
(二)指導(dǎo)觀察,形成概念。
這節(jié)課我們首先從兩類對(duì)稱:軸對(duì)稱和中心對(duì)稱展開(kāi)研究。
思考:請(qǐng)同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱性如何。
給出圖象,然后問(wèn)學(xué)生初中是怎樣判斷圖象關(guān)于軸對(duì)稱呢此時(shí)提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律。
借助課件演示,學(xué)生會(huì)回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類似的情況借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。
思考:由于對(duì)任一x,必須有一-x與之對(duì)應(yīng),因此函數(shù)的定義域有什么特征。
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱。根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語(yǔ)言敘述定義,同時(shí)給出板書:
(1)函數(shù)f(x)的定義域?yàn)閍,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)。
提出新問(wèn)題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢。
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
強(qiáng)調(diào)注意點(diǎn):“定義域關(guān)于原點(diǎn)對(duì)稱”的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識(shí),歸納步驟:
(1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱。
(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x)3)得出結(jié)論。
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
(1)f(x)=x2+1。
(2)f(x)=x3-x。
(3)f(x)=x4-3x2-1。
(4)f(x)=1/x3+1。
提出新問(wèn)題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)。
接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對(duì)稱,二是定義域雖關(guān)于原點(diǎn)對(duì)稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)。
然后根據(jù)前面引入知識(shí)中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
給出例2:書p63例3,再進(jìn)行當(dāng)堂鞏固,
1。書p65ex2。
y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。
歸納:對(duì)形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)。
(三)學(xué)生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)。
2,函數(shù)y=0有是什么函數(shù)。
(四)布置作業(yè):課本p39習(xí)題1、3(a組)第6題,b組第3。
五、板書設(shè)計(jì)。
函數(shù)的奇偶性教案人教版篇七
活動(dòng)1:觀察:
展示學(xué)生作圖作品(書p28例2),強(qiáng)調(diào)列表及圖象上的點(diǎn)的對(duì)應(yīng)關(guān)系。
課前一兩分鐘對(duì)學(xué)生上交的作圖作品進(jìn)行快速篩選,進(jìn)量多選出一部分,課上多肯定多表?yè)P(yáng)多鼓勵(lì)。再?gòu)闹羞x取一兩幅優(yōu)秀的作品上課為示例。
目的有四:
2、課上展示學(xué)生作品本身就是對(duì)學(xué)生完成作業(yè)情況的肯定,這又恰好給予了學(xué)生足夠的成功感和榮譽(yù)感,這便增加了學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,樂(lè)意學(xué)習(xí)數(shù)學(xué),激發(fā)了學(xué)習(xí)熱情,聽(tīng)課更加專心。
3、學(xué)生經(jīng)歷畫圖象進(jìn)而感悟它的形狀及與正比例函數(shù)圖象的異同,為后面的發(fā)現(xiàn)規(guī)律作了準(zhǔn)備。
4、令教師對(duì)學(xué)生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗(yàn)新知:
活動(dòng)1、觀察探索:
比較兩個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn)?
第一步;根據(jù)你的觀察結(jié)果回答問(wèn)題。(書中原問(wèn)題1、2、3)
目的:這樣在學(xué)生已經(jīng)知道正比例函數(shù)的圖象是一條直線的基礎(chǔ)上,通過(guò)對(duì)應(yīng)描點(diǎn)法來(lái)畫出了圖象,讓學(xué)生通過(guò)操作體驗(yàn)感悟兩者之間的關(guān)系,問(wèn)題變得直觀形象,學(xué)生們非常容易地完成平移。
目的:這樣通過(guò)啟發(fā)學(xué)生視覺(jué)見(jiàn)到的兩點(diǎn),即與坐標(biāo)軸的交點(diǎn){(0,b),和(-b/k,0)兩點(diǎn)};此交點(diǎn)的求法(學(xué)生易從填表中的數(shù)據(jù)發(fā)現(xiàn)),再反之引導(dǎo)學(xué)生抓住這兩點(diǎn)畫圖象。就此題體驗(yàn)一次函數(shù)圖象的兩點(diǎn)確定;同時(shí)也教會(huì)了學(xué)生用兩點(diǎn)法畫一次函數(shù)圖象。
活動(dòng)2:知識(shí)再體驗(yàn):在同一直角坐標(biāo)系中畫出四個(gè)k值不同的一次函數(shù)圖象,并觀察分析。
目的:進(jìn)一步鞏固兩點(diǎn)作圖法,為探究一次函數(shù)的性質(zhì)作準(zhǔn)備。
活動(dòng)3:展示“上下坡”材料,解決象限問(wèn)題。(多媒體展示)
目的:讓學(xué)生觸發(fā)漫畫中“上下坡”的情景,引導(dǎo)思考k、b對(duì)圖象的影響——設(shè)置化抽象為形象,化枯燥為生動(dòng),同時(shí)學(xué)生對(duì)這種直觀的知識(shí)易接受,易理解,記憶深刻。從而突出了重點(diǎn),攻破了難點(diǎn)。
活動(dòng)4:師生互動(dòng)(師生角色互換),提高拓展。(多媒體展出內(nèi)容)
目的:通過(guò)這種師生互動(dòng)角色轉(zhuǎn)換形式,不但能盡快烘起課堂氣憤,而且復(fù)習(xí)了本課的重點(diǎn)內(nèi)容,對(duì)一次函數(shù)的性質(zhì)理解的更透徹。
(三)課堂小結(jié)
引導(dǎo)學(xué)生回憶所學(xué)知識(shí)。通過(guò)這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺?
目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識(shí)的習(xí)慣;有助于學(xué)生在剛剛理解了新知識(shí)的基礎(chǔ)上,及時(shí)把知識(shí)系統(tǒng)化、條理化。
(四)作業(yè)布置
加強(qiáng)“教、學(xué)”反思,進(jìn)一步提高“教與學(xué)”效果。
四、說(shuō)板書設(shè)計(jì)
采用了如下板書,要點(diǎn)突出,簡(jiǎn)明清晰。
一次函數(shù)
正比例函數(shù)圖像的畫法:確定兩點(diǎn)為(0,0)和(1,k)一次函數(shù)選擇的兩點(diǎn)為:(0,k)和(-b\k,0)
五、說(shuō)課后小結(jié)
函數(shù)的奇偶性教案人教版篇八
理解函數(shù)的奇偶性及其幾何意義。
【過(guò)程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題。
【情感態(tài)度與價(jià)值觀】。
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點(diǎn)】。
【難點(diǎn)】。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;
(二)新課教學(xué)。
(1)偶函數(shù)(evenfunction)。
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。
2、具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
3、典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;
2確定f(-x)與f(x)的關(guān)系;
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1、教材p46習(xí)題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
說(shuō)明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。
(四)小結(jié)作業(yè)。
課本p46習(xí)題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱。
函數(shù)的奇偶性教案人教版篇九
知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。
過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。
情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操,通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
難點(diǎn):函數(shù)奇偶性的判斷。
學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。
1、復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:
2、分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象,并說(shuō)出圖象的對(duì)稱性。
(1)對(duì)于函數(shù),其定義域關(guān)于原點(diǎn)對(duì)稱:
如果______________________________________,那么函數(shù)為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。
(3)奇函數(shù)在對(duì)稱區(qū)間的增減性;偶函數(shù)在對(duì)稱區(qū)間的增減性。
(1)f(x)=x4;(2)f(x)=x5;。
(3)f(x)=x+(4)f(x)=。
a2、二次函數(shù)()是偶函數(shù),則b=___________。
b3、已知,其中為常數(shù),若,則。
_______。
b4、若函數(shù)是定義在r上的奇函數(shù),則函數(shù)的圖象關(guān)于()。
(a)軸對(duì)稱(b)軸對(duì)稱(c)原點(diǎn)對(duì)稱(d)以上均不對(duì)。
b5、如果定義在區(qū)間上的函數(shù)為奇函數(shù),則=_____。
c6、若函數(shù)是定義在r上的奇函數(shù),且當(dāng)時(shí),,那么當(dāng)。
時(shí),=_______。
d7、設(shè)是上的奇函數(shù),,當(dāng)時(shí),,則等于()。
(a)0.5(b)(c)1.5(d)。
d8、定義在上的奇函數(shù),則常數(shù)____,_____。
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
函數(shù)的奇偶性教案人教版篇十
【過(guò)程與方法】。
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來(lái)解決問(wèn)題。
【情感態(tài)度與價(jià)值觀】。
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
【重點(diǎn)】。
【難點(diǎn)】。
(一)導(dǎo)入新課。
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問(wèn)題:
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;。
(二)新課教學(xué)。
(1)偶函數(shù)(evenfunction)。
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義。
(2)奇函數(shù)(oddfunction)。
注意:
1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);。
2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。
2.具有奇偶性的函數(shù)的圖象的特征。
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
3.典型例題。
例1.(教材p36例3)應(yīng)用函數(shù)奇偶性定義說(shuō)明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)。
解:(略)。
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;。
2確定f(-x)與f(x)的關(guān)系;。
3作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);。
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù)。
(三)鞏固提高。
1.教材p46習(xí)題1.3b組每1題。
解:(略)。
(教材p41思考題)。
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
(四)小結(jié)作業(yè)。
課本p46習(xí)題1.3(a組)第9、10題,b組第2題。
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;。
奇函數(shù)的`圖象關(guān)于原點(diǎn)對(duì)稱。
函數(shù)的奇偶性教案人教版篇十一
本課的內(nèi)容是人教版八年級(jí)上冊(cè)第14章第2節(jié)第2課時(shí),就是課本115到116頁(yè)的內(nèi)容。在許多方面與正比例函數(shù)的圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點(diǎn)。本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過(guò)這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點(diǎn)看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)說(shuō)教學(xué)目標(biāo)
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識(shí)技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會(huì)利用兩個(gè)合適的點(diǎn)畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
數(shù)學(xué)思考:
2、通過(guò)一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗(yàn)數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。
(三)說(shuō)教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點(diǎn):由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對(duì)性質(zhì)的理解。
函數(shù)的奇偶性教案人教版篇十二
教材分析:
本章包括銳角三角函數(shù)的概念(主要是正弦、余弦和正切的概念),以及利用銳角三角函數(shù)解直角三角形等內(nèi)容。銳角三角函數(shù)為解直角三角形提供了有效的工具,解直角三角形在實(shí)際當(dāng)中有著廣泛的應(yīng)用,這也為銳角三角函數(shù)提供了與實(shí)際聯(lián)系的機(jī)會(huì)。研究銳角三角函數(shù)的直接基礎(chǔ)是相似三角形的一些結(jié)論,解直角三角形主要依賴銳角三角函數(shù)和勾股定理等內(nèi)容,因此相似三角形和勾股定理等是學(xué)習(xí)本章的直接基礎(chǔ)。
本章內(nèi)容與已學(xué)'相似三角形''勾股定理'等內(nèi)容聯(lián)系緊密,并為高中數(shù)學(xué)中三角函數(shù)等知識(shí)的學(xué)習(xí)作好準(zhǔn)備。
學(xué)情分析:
銳角三角函數(shù)的概念既是本章的難點(diǎn),也是學(xué)習(xí)本章的關(guān)鍵。難點(diǎn)在于,銳角三角函數(shù)的概念反映了角度與數(shù)值之間對(duì)應(yīng)的函數(shù)關(guān)系,這種角與數(shù)之間的對(duì)應(yīng)關(guān)系,以及用含有幾個(gè)字母的符號(hào)sina、cosa、tana表示函數(shù)等,學(xué)生過(guò)去沒(méi)有接觸過(guò),因此對(duì)學(xué)生來(lái)講有一定的難度。至于關(guān)鍵,因?yàn)橹挥姓_掌握了銳角三角函數(shù)的概念,才能真正理解直角三角形中邊、角之間的關(guān)系,從而才能利用這些關(guān)系解直角三角形。
第一課時(shí)。
教學(xué)目標(biāo):
知識(shí)與技能:
1、通過(guò)探究使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊與斜邊的比值都固定(即正弦值不變)這一事實(shí)。
2、能根據(jù)正弦概念正確進(jìn)行計(jì)算。
3、經(jīng)歷當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊與斜邊的比值是固定值這一事實(shí),發(fā)展學(xué)生的形象思維,培養(yǎng)學(xué)生由特殊到一般的演繹推理能力。
過(guò)程與方法:
通過(guò)銳角三角函數(shù)的學(xué)習(xí),進(jìn)一步認(rèn)識(shí)函數(shù),體會(huì)函數(shù)的變化與對(duì)應(yīng)的思想,逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.
情感態(tài)度與價(jià)值觀:
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
重難點(diǎn):
1.重點(diǎn):理解認(rèn)識(shí)正弦(sina)概念,通過(guò)探究使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊與斜邊的比值是固定值這一事實(shí).
2.難點(diǎn)與關(guān)鍵:引導(dǎo)學(xué)生比較、分析并得出:對(duì)任意銳角,它的對(duì)邊與斜邊的比值是固定值的事實(shí).
教學(xué)過(guò)程:
一、復(fù)習(xí)舊知、引入新課。
【引入】操場(chǎng)里有一個(gè)旗桿,老師讓小明去測(cè)量旗桿高度。(演示學(xué)校操場(chǎng)上的國(guó)旗圖片)。
小明站在離旗桿底部10米遠(yuǎn)處,目測(cè)旗桿的頂部,視線與水平線的夾角為34度,并已知目高為1米.然后他很快就算出旗桿的高度了。
你想知道小明怎樣算出的嗎?
下面我們大家一起來(lái)學(xué)習(xí)銳角三角函數(shù)中的第一種:銳角的正弦。
二、探索新知、分類應(yīng)用。
【活動(dòng)一】問(wèn)題的引入。
函數(shù)的奇偶性教案人教版篇十三
1、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,體會(huì)反比例函數(shù)的含義,理解反比例函數(shù)的概念。
2、理解反比例函數(shù)的意義,根據(jù)題目條件會(huì)求對(duì)應(yīng)量的值,能用待定系數(shù)法求反比例函數(shù)關(guān)系。
3、讓學(xué)生經(jīng)歷在實(shí)際問(wèn)題中探索數(shù)量關(guān)系的過(guò)程,養(yǎng)成用數(shù)學(xué)思維方式解決實(shí)際問(wèn)題的習(xí)慣,體會(huì)數(shù)學(xué)在解決實(shí)際問(wèn)題中的作用。
【學(xué)習(xí)難點(diǎn)】反比例函數(shù)的解析式的確定。
【學(xué)法指導(dǎo)】自主、合作、探究。
教學(xué)互動(dòng)設(shè)計(jì)。
【自主學(xué)習(xí),基礎(chǔ)過(guò)關(guān)】。
一、自主學(xué)習(xí):
(一)復(fù)習(xí)鞏固。
1.在一個(gè)變化的過(guò)程中,如果有兩個(gè)變量x和y,當(dāng)x在其取值范圍內(nèi)任意取一個(gè)值時(shí),y,則稱x為,y叫x的.
2.一次函數(shù)的解析式是:;當(dāng)時(shí),稱為正比例函數(shù).
3.一條直線經(jīng)過(guò)點(diǎn)(2,3)、(4,7),求該直線的解析式.
以上這種求函數(shù)解析式的方法叫:
(二)自主探究。
提出問(wèn)題:下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)?可用怎樣的函數(shù)關(guān)系式表示?
(2)某住宅小區(qū)要。
函數(shù)的奇偶性教案人教版篇十四
教學(xué)目標(biāo):了解奇偶性的含義,會(huì)判斷函數(shù)的奇偶性。能證明一些簡(jiǎn)單函數(shù)的奇偶性。弄清函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。
難點(diǎn):函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。
一、復(fù)習(xí)引入。
(1)奇函數(shù)。
(2)偶函數(shù)。
(3)與圖象對(duì)稱性的關(guān)系。
(4)說(shuō)明(定義域的要求)。
二、例題分析。
例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)。
例2、證明函數(shù)在r上是奇函數(shù)。
三、隨堂練習(xí)。
1、函數(shù)()。
是奇函數(shù)但不是偶函數(shù)是偶函數(shù)但不是奇函數(shù)。
既是奇函數(shù)又是偶函數(shù)既不是奇函數(shù)又不是偶函數(shù)。
2、下列4個(gè)判斷中,正確的是_______.
(1)既是奇函數(shù)又是偶函數(shù);
(2)是奇函數(shù);
(3)是偶函數(shù);
(4)是非奇非偶函數(shù)。
3、函數(shù)的圖象是否關(guān)于某直線對(duì)稱?它是否為偶函數(shù)?
函數(shù)的奇偶性教案人教版篇十五
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時(shí)間的關(guān)系,小華八點(diǎn)離開(kāi)家,十四點(diǎn)回到家,根據(jù)這個(gè)曲線圖,請(qǐng)回答下列問(wèn)題:
(1)到達(dá)離家最遠(yuǎn)的地方是幾點(diǎn)?離家多遠(yuǎn)?
(2)何時(shí)開(kāi)始第一次休息?休息多長(zhǎng)時(shí)間?
(3)小華在往返全程中,在什么時(shí)間范圍內(nèi)平均速度最快?最快速度是多少?
(4)小華何時(shí)離家21千米?(寫出計(jì)算過(guò)程)。
函數(shù)的奇偶性教案人教版篇十六
1、了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法。
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性。
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程。
2、通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想。
3、通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。
一、知識(shí)結(jié)構(gòu)。
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析。
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí)。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),掌握單調(diào)性的證明。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn)。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái)。在這個(gè)過(guò)程當(dāng)中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái)。
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來(lái)。經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
函數(shù)的奇偶性教案人教版篇十七
正比例函數(shù)的概念.
2.內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過(guò)對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn).
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問(wèn)題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過(guò)對(duì)生活中大量實(shí)際問(wèn)題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念.
二、目標(biāo)和目標(biāo)解析。
1.目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過(guò)程,理解正比例函數(shù)的概念;。
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想.
2.目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過(guò)對(duì)實(shí)際問(wèn)題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問(wèn)題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問(wèn)題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想.
三、教學(xué)問(wèn)題診斷分析。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問(wèn)題進(jìn)行分析過(guò)程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問(wèn)題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過(guò)大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程學(xué)生有一定難度.
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過(guò)程.
四、教學(xué)過(guò)程設(shè)計(jì)。
1.情境引入,初步感知。
引言。
上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識(shí),知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開(kāi)始,我們將重點(diǎn)研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問(wèn)題12011年開(kāi)始運(yùn)營(yíng)的京滬高速鐵路全長(zhǎng)1318km.設(shè)列車的平均速度為300km/h.考慮以下問(wèn)題:
師生活動(dòng):教師引導(dǎo)學(xué)生分析問(wèn)題中的數(shù)量關(guān)系,這是典型的行程問(wèn)題,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.
設(shè)計(jì)意圖:讓學(xué)生真切感受數(shù)學(xué)與實(shí)際的聯(lián)系,即數(shù)學(xué)理論來(lái)源于實(shí)際又服務(wù)于實(shí)際.幫助學(xué)生逐步提高將實(shí)際問(wèn)題抽象為函數(shù)模型的能力,初步體會(huì)函數(shù)建模思想.
設(shè)計(jì)意圖:由于自變量t是列車運(yùn)行時(shí)間,作為實(shí)際問(wèn)題,自變量的取值是受限制的,應(yīng)對(duì)其取值范圍作出說(shuō)明.
對(duì)問(wèn)題(2)的分析解答過(guò)程讓學(xué)生回答下列問(wèn)題:
追問(wèn)1這個(gè)問(wèn)題中兩個(gè)變量之間的對(duì)應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說(shuō)明理由.
設(shè)計(jì)意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,體會(huì)函數(shù)關(guān)系蘊(yùn)涵在實(shí)際問(wèn)題中,激發(fā)學(xué)生探究興趣.對(duì)理由的說(shuō)明學(xué)生可能有障礙,此時(shí)教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過(guò)程,用函數(shù)的概念來(lái)回答:?jiǎn)栴}中的兩個(gè)變量,當(dāng)其中的變量t變化時(shí),另一個(gè)變量y隨著t的變化而變化,并且對(duì)于變量t的每一個(gè)?定的值,另一個(gè)變量y都有唯一確定的值與之對(duì)應(yīng).
追問(wèn)2請(qǐng)你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?
追問(wèn)3對(duì)于自變量t和函數(shù)y的每一對(duì)對(duì)應(yīng)值,y與t的比值,
【本文地址:http://aiweibaby.com/zuowen/8538433.html】