教案的內(nèi)容應(yīng)該有足夠的教學(xué)資源和活動(dòng),以激發(fā)學(xué)生的學(xué)習(xí)興趣和提高學(xué)習(xí)效果。教案的編寫(xiě)應(yīng)注重培養(yǎng)學(xué)生的合作意識(shí)和團(tuán)隊(duì)精神以下是一些教案范文,希望對(duì)大家教學(xué)備課工作有所幫助和啟發(fā)。
正弦定理教案篇一
今天我說(shuō)課的內(nèi)容是余弦定理,本節(jié)內(nèi)容共分3課時(shí),今天我將就第1課時(shí)的余弦定理的證明與簡(jiǎn)單應(yīng)用進(jìn)行說(shuō)課。下面我分別從教材分析。教學(xué)目標(biāo)的確定。教學(xué)方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)這四個(gè)方面來(lái)闡述我對(duì)這節(jié)課的教學(xué)設(shè)想。
本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過(guò)了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過(guò)渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來(lái),實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問(wèn)題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。
在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。
基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:
基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問(wèn)題出發(fā),發(fā)現(xiàn)無(wú)法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問(wèn)題,最終形成概念,獲得方法,培養(yǎng)能力。
在教學(xué)中利用計(jì)算機(jī)多媒體來(lái)輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。
為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過(guò)程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過(guò)程如下:
1、創(chuàng)設(shè)情境,引入課題
利用多媒體引出如下問(wèn)題:
a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。
【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過(guò)正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無(wú)法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。
2、探索研究、構(gòu)建新知
(1)由于初中接觸的是解直角三角形的問(wèn)題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形()時(shí)考慮。此時(shí)使用勾股定理,得。
(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形()中。
通過(guò)解決問(wèn)題可以得到在任意三角形中都有,之后讓同學(xué)們類(lèi)比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。
在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類(lèi)比向量法證明正弦定理的過(guò)程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來(lái)表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。
根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類(lèi)解斜三角形的問(wèn)題:
(1)已知三邊,求三個(gè)角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。
3、例題講解、鞏固練習(xí)
本階段的教學(xué)主要是通過(guò)對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問(wèn)題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書(shū),課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書(shū),從而鞏固余弦定理的運(yùn)用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】例題1分別是通過(guò)已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。
例2對(duì)于例題1(2),求的大小。
【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問(wèn)題可以避免解的取舍問(wèn)題。
例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),
【設(shè)計(jì)意圖】例3通過(guò)對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。
課堂練習(xí):
練習(xí)1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。
練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。
a、能組成直角三角形
b、能組成銳角三角形
c、能組成鈍角三角形
d、不能組成三角形
【設(shè)計(jì)意圖】與例題3相呼應(yīng)。
練習(xí)3在中,已知,試求的大小。
【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。
4、課堂小結(jié),布置作業(yè)
先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):
(1)余弦定理的內(nèi)容和公式;
(2)余弦定理實(shí)質(zhì)上是勾股定理的推廣;
(3)余弦定理的可以解決的兩類(lèi)解斜三角形的問(wèn)題。
通過(guò)師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。
布置作業(yè)
必做題:習(xí)題1、2、1、2、3、5、6;
選做題:習(xí)題1、2、12、13。
【設(shè)計(jì)意圖】
作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。
各位老師,以上所說(shuō)只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。
本說(shuō)課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見(jiàn),謝謝。
正弦定理教案篇二
通過(guò)正弦定理讓我們更容易的了解數(shù)學(xué),正弦定理的教學(xué)內(nèi)容有哪些呢?以下是本站小編為大家整理的關(guān)于《正弦定理》教案,給大家作為參考,歡迎閱讀!
一、教學(xué)內(nèi)容分析。
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問(wèn)題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過(guò)對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
二、學(xué)情分析。
對(duì)高一的學(xué)生來(lái)說(shuō),一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問(wèn)題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問(wèn)題、解決問(wèn)題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來(lái)理解就是:知識(shí)不僅是通過(guò)教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過(guò)與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問(wèn)題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性。
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類(lèi)基本問(wèn)題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無(wú)解三種情況。
3、通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來(lái)源于生活,又服務(wù)與生活。
五、教學(xué)重點(diǎn)與難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
一、復(fù)習(xí)引入:
結(jié)論:
證明:(向量法)過(guò)a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個(gè)問(wèn)題需要精心設(shè)計(jì)。一個(gè)是問(wèn)題的引入,一個(gè)是定理的證明。通過(guò)兩個(gè)實(shí)際問(wèn)題引入,讓學(xué)生體會(huì)為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問(wèn)題的方法。具體的思路就是從解決課本的實(shí)際問(wèn)題入手展開(kāi),將問(wèn)題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問(wèn)題的能力。
1.在教學(xué)過(guò)程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會(huì)數(shù)學(xué)問(wèn)題是如何解決的,給學(xué)生解決問(wèn)題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問(wèn)題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類(lèi)討論思想和數(shù)形結(jié)合思想等思想。
2.在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。利用《幾何畫(huà)板》探究比值的值,由動(dòng)到靜,取得了很好的效果,加深了學(xué)生的印象。
3.由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時(shí)間的超時(shí),這說(shuō)明我自己對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過(guò)程中時(shí)間的分配不夠適當(dāng),教學(xué)語(yǔ)言不夠精簡(jiǎn),今后我一定避免此類(lèi)問(wèn)題,爭(zhēng)取更大的進(jìn)步。
正弦定理教案篇三
本節(jié)內(nèi)容是江蘇教育出版社出版的普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》必修五的第一章第2節(jié),在此之前學(xué)生已經(jīng)學(xué)習(xí)過(guò)了勾股定理。平面向量、正弦定理等相關(guān)知識(shí),這為過(guò)渡到本節(jié)內(nèi)容的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容實(shí)質(zhì)是學(xué)生已經(jīng)學(xué)習(xí)的勾股定理的延伸和推廣,它描述了三角形重要的邊角關(guān)系,將三角形的“邊”與“角”有機(jī)的聯(lián)系起來(lái),實(shí)現(xiàn)邊角關(guān)系的互化,為解決斜三角形中的邊角求解問(wèn)題提供了一個(gè)重要的工具,同時(shí)也為在日后學(xué)習(xí)中判斷三角形形狀,證明三角形有關(guān)的等式與不等式提供了重要的依據(jù)。
在本節(jié)課中教學(xué)重點(diǎn)是余弦定理的內(nèi)容和公式的掌握,余弦定理在三角形邊角計(jì)算中的運(yùn)用;教學(xué)難點(diǎn)是余弦定理的發(fā)現(xiàn)及證明;教學(xué)關(guān)鍵是余弦定理在三角形邊角計(jì)算中的運(yùn)用。
基于以上對(duì)教材的認(rèn)識(shí),根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者。引導(dǎo)者與合作者”這一基本理念,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我認(rèn)為本節(jié)課的教學(xué)目標(biāo)有:
基于本節(jié)課是屬于新授課中的數(shù)學(xué)命題教學(xué),根據(jù)《學(xué)記》中啟發(fā)誘導(dǎo)的思想和布魯納的發(fā)現(xiàn)學(xué)習(xí)理論,我將主要采用“啟發(fā)式教學(xué)”和“探究性教學(xué)”的教學(xué)方法即從一個(gè)實(shí)際問(wèn)題出發(fā),發(fā)現(xiàn)無(wú)法使用剛學(xué)習(xí)的正弦定理解決,造成學(xué)生在認(rèn)知上的沖突,產(chǎn)生疑惑,從而激發(fā)學(xué)生的探索新知的欲望,之后進(jìn)一步啟發(fā)誘導(dǎo)學(xué)生分析,綜合,概括從而得出原理解決問(wèn)題,最終形成概念,獲得方法,培養(yǎng)能力。
在教學(xué)中利用計(jì)算機(jī)多媒體來(lái)輔助教學(xué),充分發(fā)揮其快捷、生動(dòng)、形象的特點(diǎn)。
為達(dá)到本節(jié)課的教學(xué)目標(biāo)、突出重點(diǎn)、突破難點(diǎn),在教材分析、確定教學(xué)目標(biāo)和合理選擇教法與學(xué)法的基礎(chǔ)上,我把教學(xué)過(guò)程設(shè)計(jì)為以下四個(gè)階段:創(chuàng)設(shè)情境、引入課題;探索研究、構(gòu)建新知;例題講解、鞏固練習(xí);課堂小結(jié),布置作業(yè)。具體過(guò)程如下:
1、創(chuàng)設(shè)情境,引入課題
利用多媒體引出如下問(wèn)題:
a地和b地之間隔著一個(gè)水塘現(xiàn)選擇一地點(diǎn)c,可以測(cè)得的大小及,求a、b兩地之間的距離c。
【設(shè)計(jì)意圖】由于學(xué)生剛學(xué)過(guò)正弦定理,一定會(huì)采用剛學(xué)的知識(shí)解題,但由于無(wú)法找到一組已知的邊及其所對(duì)角,從而產(chǎn)生疑惑,激發(fā)學(xué)生探索欲望。
2、探索研究、構(gòu)建新知
(1)由于初中接觸的是解直角三角形的問(wèn)題,所以我將先帶領(lǐng)學(xué)生從特殊情況為直角三角形( )時(shí)考慮。此時(shí)使用勾股定理,得。
(3)考慮到我們所作的圖為銳角三角形,討論上述結(jié)論能否推廣到在為鈍角三角形( )中。
通過(guò)解決問(wèn)題可以得到在任意三角形中都有,之后讓同學(xué)們類(lèi)比出……這樣我就完成了對(duì)余弦定理的引入,之后總結(jié)給出余弦定理的內(nèi)容及公式表示。
在學(xué)生已學(xué)習(xí)了向量的基礎(chǔ)上,考慮到新課改中要求使用新工具、新方法,我會(huì)引導(dǎo)同學(xué)類(lèi)比向量法證明正弦定理的過(guò)程嘗試使用向量的方法證明余弦定理、之后引導(dǎo)學(xué)生對(duì)余弦定理公式進(jìn)行變形,用三邊值來(lái)表示角的余弦值,給出余弦定理的第二種表示形式,這樣就完成了新知的構(gòu)建。
根據(jù)余弦定理的兩種形式,我們可以利用余弦定理解決以下兩類(lèi)解斜三角形的問(wèn)題:
(1)已知三邊,求三個(gè)角;
(2)已知三角形兩邊及其夾角,求第三邊和其他兩個(gè)角。
3、例題講解、鞏固練習(xí)
本階段的教學(xué)主要是通過(guò)對(duì)例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握使用余弦定理解決問(wèn)題的方法。其中例題先以學(xué)生自己思考解題為主,教師點(diǎn)評(píng)后再規(guī)范解題步驟及板書(shū),課堂練習(xí)請(qǐng)同學(xué)們自主完成,并請(qǐng)同學(xué)上黑板板書(shū),從而鞏固余弦定理的運(yùn)用。
例題講解:
例1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】例題1分別是通過(guò)已知三角形兩邊及其夾角求第三邊,已知三角形三邊求其夾角,這樣余弦定理的兩個(gè)形式分別得到了運(yùn)用,進(jìn)而鞏固了學(xué)生對(duì)余弦定理的運(yùn)用。
例2對(duì)于例題1(2),求的大小。
【設(shè)計(jì)意圖】已經(jīng)求出了的度數(shù),學(xué)生可能會(huì)有兩種解法:運(yùn)用正弦定理或運(yùn)用余弦定理,比較正弦定理和余弦定理,發(fā)現(xiàn)使用余弦定理求解角的問(wèn)題可以避免解的取舍問(wèn)題。
例3使用余弦定理證明:在中,當(dāng)為銳角時(shí);當(dāng)為鈍角時(shí),
【設(shè)計(jì)意圖】例3通過(guò)對(duì)和的比較,體現(xiàn)了“余弦定理是勾股定理的推廣”這一思想,進(jìn)一步加深了對(duì)余弦定理的認(rèn)識(shí)和理解。
課堂練習(xí):
練習(xí)1在中,
(1)已知,求;
(2)已知,求。
【設(shè)計(jì)意圖】檢驗(yàn)學(xué)生是否掌握余弦定理的兩個(gè)形式,鞏固學(xué)生對(duì)余弦定理的運(yùn)用。
練習(xí)2若三條線段長(zhǎng)分別為5,6,7,則用這三條線段()。
a、能組成直角三角形
b、能組成銳角三角形
c、能組成鈍角三角形
d、不能組成三角形
【設(shè)計(jì)意圖】與例題3相呼應(yīng)。
練習(xí)3在中,已知,試求的大小。
【設(shè)計(jì)意圖】要求靈活使用公式,對(duì)公式進(jìn)行變形。
4、課堂小結(jié),布置作業(yè)
先請(qǐng)同學(xué)對(duì)本節(jié)課所學(xué)內(nèi)容進(jìn)行小結(jié),教師再對(duì)以下三個(gè)方面進(jìn)行總結(jié):
(1)余弦定理的內(nèi)容和公式;
(2)余弦定理實(shí)質(zhì)上是勾股定理的推廣;
(3)余弦定理的可以解決的兩類(lèi)解斜三角形的問(wèn)題。
通過(guò)師生的共同小結(jié),發(fā)揮學(xué)生的主體作用,有利于學(xué)生鞏固所學(xué)知識(shí),也能培養(yǎng)學(xué)生的歸納和概括能力。
布置作業(yè)
必做題:習(xí)題1、2、1、2、3、5、6;
選做題:習(xí)題1、2、12、13。
作業(yè)分為必做題和選做題、針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。
各位老師,以上所說(shuō)只是我預(yù)設(shè)的一種方案,但課堂是千變?nèi)f化的,會(huì)隨著學(xué)生和教師的臨時(shí)發(fā)揮而隨機(jī)生成。預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實(shí)踐的檢驗(yàn)。
本說(shuō)課一定存在諸多不足,懇請(qǐng)老師提出寶貴意見(jiàn),謝謝。
正弦定理教案篇四
《余弦定理》選自人教a版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時(shí)。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運(yùn)用余弦定理解決“兩邊一夾角”“三邊”的解三角形問(wèn)題。
知識(shí)與技能:1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導(dǎo)、證明過(guò)程。
3、能運(yùn)用余弦定理及其推論解決“兩邊一夾角”“三邊”問(wèn)題。 過(guò)程與方法:1、通過(guò)從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題,培養(yǎng)學(xué)生知識(shí)的遷移能力。
2、通過(guò)直角三角形到一般三角形的過(guò)渡,培養(yǎng)學(xué)生歸納總結(jié)能力。3、通過(guò)余弦定理推導(dǎo)證明的過(guò)程,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
情感態(tài)度與價(jià)值觀:1、在交流合作的過(guò)程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗(yàn) 解決問(wèn)題的成功喜悅。
2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。 三、教學(xué)重難點(diǎn)
重點(diǎn):余弦定理及其推論和余弦定理的運(yùn)用。
難點(diǎn):余弦定理的發(fā)現(xiàn)和推導(dǎo)過(guò)程以及多解情況的判斷。
四、教學(xué)用具
普通教學(xué)工具、多媒體工具 (以上均為命題教學(xué)的準(zhǔn)備)
正弦定理教案篇五
在備這節(jié)課時(shí),我有兩個(gè)問(wèn)題需要精心設(shè)計(jì)。一個(gè)是問(wèn)題的引入,一個(gè)是定理的證明。本節(jié)課以學(xué)生為主體,“問(wèn)題提出---問(wèn)題解決為主線”,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。
上完這節(jié)課,讓我有這樣一些體會(huì):
1、問(wèn)題是思維的起點(diǎn),是學(xué)生主動(dòng)探索的動(dòng)力。本節(jié)課在教學(xué)過(guò)程中充分發(fā)揮學(xué)生主體作用,始終以問(wèn)題的形式引導(dǎo)學(xué)生主動(dòng)參與,在師生互動(dòng)、生生互動(dòng)中讓學(xué)習(xí)過(guò)程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過(guò)程,做到了把握重點(diǎn)、突破難點(diǎn)。
2、在教學(xué)中恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。本節(jié)課利用《幾何畫(huà)板》探究比值,的值,由動(dòng)到靜,取得了很好的效果?!?/p>
3、做練習(xí)時(shí),有學(xué)生提出解三角形時(shí),正弦定理可以解決哪些問(wèn)題?學(xué)生有這樣歸納的意識(shí),在課堂及時(shí)肯定,表?yè)P(yáng),并在課后刻意留一道思考題,任務(wù)后延,自主探究,使學(xué)生發(fā)現(xiàn)用正弦定理解決兩邊一對(duì)角問(wèn)題時(shí)可能會(huì)出現(xiàn)兩解,一解或無(wú)解的情況,那么自然過(guò)渡到下一節(jié)內(nèi)容,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)問(wèn)題。
4、正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等,本節(jié)課將斜三角形的邊角關(guān)系轉(zhuǎn)化為直角三角形的邊角關(guān)系導(dǎo)出正弦定理,采用轉(zhuǎn)化,分類(lèi)討論的的數(shù)學(xué)思想,是學(xué)生們易于接受的一種證明方法。但在具體的推導(dǎo)時(shí),發(fā)現(xiàn)學(xué)生可以想到對(duì)三角形進(jìn)行分類(lèi)討論,并將斜三角形轉(zhuǎn)化成直角三角形證明,但在轉(zhuǎn)化時(shí),不僅可以通過(guò)作高,還可以有別的方法,比如外接圓法。但在證明時(shí)只用了作高這種方法,這種思路雖然簡(jiǎn)單,但不是從學(xué)生的頭腦中產(chǎn)生的,而是教師強(qiáng)加給學(xué)生的,只注意教學(xué)的結(jié)果而沒(méi)有注意學(xué)生思維過(guò)程的發(fā)展,思路再好對(duì)學(xué)生的也沒(méi)有指導(dǎo)意義。所以今后要注意尊重學(xué)生思維的發(fā)展的過(guò)程,這是一種理念,也是一種能力。上好一堂課不僅有好的教學(xué)設(shè)計(jì),還應(yīng)有靈活應(yīng)變的能力,要尊重學(xué)生的思路,善于發(fā)現(xiàn)學(xué)生的閃光點(diǎn),并及時(shí)引導(dǎo),才不會(huì)為了進(jìn)度而導(dǎo)下,將學(xué)生強(qiáng)拉進(jìn)自己事先設(shè)計(jì)好的軌道。
5、在教學(xué)設(shè)計(jì)和課堂教學(xué)中應(yīng)充分了解學(xué)生、研究學(xué)生,備課不僅是備知識(shí),更重要的是備學(xué)生。作為教師只有真正樹(shù)立以學(xué)生的發(fā)展為本的教學(xué)理念,才能尊重學(xué)生思維過(guò)程的發(fā)生、發(fā)展,才能從學(xué)生的知識(shí)水平和理解能力出發(fā),創(chuàng)設(shè)合理的教學(xué)情境,才能為學(xué)生提供充分的數(shù)學(xué)活動(dòng)和交流的機(jī)會(huì),使學(xué)生從單純的知識(shí)接受者轉(zhuǎn)變?yōu)閿?shù)學(xué)學(xué)習(xí)的主人。
正弦定理教案篇六
人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)?必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過(guò)利用向量的數(shù)量積方法推導(dǎo)余弦定理,正確理解其結(jié)構(gòu)特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問(wèn)題,初步體會(huì)余弦定理解決“邊、邊、角”,體會(huì)方程思想,激發(fā)學(xué)生探究數(shù)學(xué),應(yīng)用數(shù)學(xué)的潛能。
本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識(shí)和正弦定理有關(guān)內(nèi)容,對(duì)于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識(shí)。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣??傮w上學(xué)生應(yīng)用數(shù)學(xué)知識(shí)的意識(shí)不強(qiáng),創(chuàng)造力較弱,看待與分析問(wèn)題不深入,知識(shí)的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度,在發(fā)掘出余弦定理的結(jié)構(gòu)特征、表現(xiàn)形式的數(shù)學(xué)美時(shí),能夠激發(fā)學(xué)生熱愛(ài)數(shù)學(xué)的思想感情;從具體問(wèn)題中抽象出數(shù)學(xué)的本質(zhì),應(yīng)用方程的思想去審視,解決問(wèn)題是學(xué)生學(xué)習(xí)的一大難點(diǎn)。
新課程的數(shù)學(xué)提倡學(xué)生動(dòng)手實(shí)踐,自主探索,合作交流,深刻地理解基本結(jié)論的本質(zhì),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,力求對(duì)現(xiàn)實(shí)世界蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考,作出判斷;同時(shí)要求教師從知識(shí)的傳授者向課堂的設(shè)計(jì)者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱?、探究開(kāi)發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動(dòng)合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),深刻地體會(huì)數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識(shí)的潛能。
繼續(xù)探索三角形的邊長(zhǎng)與角度間的具體量化關(guān)系、掌握余弦定理的兩種表現(xiàn)形式,體會(huì)向量方法推導(dǎo)余弦定理的思想;通過(guò)實(shí)踐演算運(yùn)用余弦定理解決“邊、角、邊”及“邊、邊、邊”問(wèn)題;深化與細(xì)化方程思想,理解余弦定理的本質(zhì)。通過(guò)相關(guān)教學(xué)知識(shí)的聯(lián)系性,理解事物間的普遍聯(lián)系性。
教學(xué)重點(diǎn)是余弦定理的發(fā)現(xiàn)過(guò)程及定理的應(yīng)用;教學(xué)難點(diǎn)是用向量的數(shù)量積推導(dǎo)余弦定理的思路方法及余弦定理在應(yīng)用求解三角形時(shí)的思路。
本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計(jì)時(shí)既要兼顧前后知識(shí)的聯(lián)系,又要使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識(shí)逐漸地融為一體,構(gòu)建比較完整的知識(shí)系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問(wèn)題。本課教學(xué)設(shè)計(jì)力求在型(模型、類(lèi)型),質(zhì)(實(shí)質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過(guò)三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡(jiǎn)潔的工具。因此在本課的教學(xué)設(shè)計(jì)中抓住前后知識(shí)的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對(duì)數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識(shí)數(shù)學(xué)與實(shí)際的聯(lián)系,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)和方法解決一些實(shí)際問(wèn)題。學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造力不足、看待問(wèn)題不深入,很大原因在于學(xué)生的知識(shí)系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問(wèn)題,在提出問(wèn)題、思考分析問(wèn)題、解決問(wèn)題等多方面對(duì)學(xué)生進(jìn)行示范引導(dǎo),將舊知識(shí)與新知識(shí)進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識(shí)結(jié)構(gòu)。
正弦定理教案篇七
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問(wèn)題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過(guò)對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
對(duì)高一的學(xué)生來(lái)說(shuō),一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問(wèn)題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問(wèn)題、解決問(wèn)題。
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來(lái)理解就是:知識(shí)不僅是通過(guò)教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過(guò)與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
1、在創(chuàng)設(shè)的問(wèn)題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性.
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類(lèi)基本問(wèn)題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無(wú)解三種情況。
3、通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來(lái)源于生活,又服務(wù)與生活。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
突破難點(diǎn)的手段:抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
結(jié)論:
證明:(向量法)過(guò)a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
正弦定理教案篇八
本節(jié)課是“正弦定理”教學(xué)的第二節(jié)課,其主要任務(wù)是通過(guò)對(duì)正弦定理的進(jìn)一步理解,明確它在“已知三角形的兩邊及一邊所對(duì)的角解三角形”方面的應(yīng)用和運(yùn)用正弦定理的變式來(lái)求三角形中的角和判斷三角形的形狀。
在知識(shí)目標(biāo)方面:通過(guò)創(chuàng)設(shè)適宜的數(shù)學(xué)情境,引導(dǎo)鼓勵(lì)學(xué)生大膽地提出問(wèn)題、引導(dǎo)學(xué)生對(duì)所提的問(wèn)題進(jìn)行分析、整理,篩選出有價(jià)值的問(wèn)題,注意啟發(fā)學(xué)生揭示問(wèn)題的數(shù)學(xué)實(shí)質(zhì),將提問(wèn)推向深入。通過(guò)問(wèn)題的提出、解題方法的探索、到問(wèn)題的解決、方法的總結(jié)、及練習(xí)題中方法的應(yīng)用,都能緊抓公式及公式的變式,運(yùn)用從特殊到一般、再?gòu)囊话愕教厥獾乃枷敕椒ㄟ_(dá)成知識(shí)目標(biāo)。通過(guò)練習(xí)及六個(gè)變式問(wèn)題調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,進(jìn)而采用“正弦定理”、“大邊對(duì)大角”、“三角形內(nèi)角和定理”、“數(shù)形結(jié)合”等知識(shí)與方法有效突破本節(jié)課的教學(xué)難點(diǎn)。使學(xué)生明白這一類(lèi)數(shù)學(xué)問(wèn)題該怎樣解,讓學(xué)生做到“學(xué)會(huì)數(shù)學(xué),會(huì)學(xué)數(shù)學(xué)”
在能力目標(biāo)方面:通過(guò)例題、練習(xí)及六個(gè)變式問(wèn)題,培養(yǎng)學(xué)生觀察、歸納、概括新知識(shí)的能力;通過(guò)“故意出錯(cuò)”,讓學(xué)生“質(zhì)疑”、“找錯(cuò)”、“改錯(cuò)”,從而使學(xué)生的思維具有批判性,優(yōu)化他們的思維品質(zhì);通過(guò)課后練習(xí)及課后思考,進(jìn)一步培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),解決數(shù)學(xué)問(wèn)題的能力。
在情感態(tài)度與價(jià)值觀方面:本節(jié)課也很注重對(duì)學(xué)生非智力因素的培養(yǎng),注重情感交流與情感的建立與培養(yǎng)。并在教學(xué)過(guò)程中做到:與學(xué)生真誠(chéng)相處、平等交流;依據(jù)自己的個(gè)人特點(diǎn)采取適當(dāng)?shù)?方法與技巧,注重充分發(fā)揮教師的個(gè)人人格魅力,而非千篇一律的“柔聲細(xì)語(yǔ)”;能借助信息技術(shù)及其它手段,營(yíng)造一種氛圍,一種情境,通過(guò)“課前音樂(lè)背景”的設(shè)置,“課堂上的掌聲鼓勵(lì)”“形體語(yǔ)言與語(yǔ)言藝術(shù)”的運(yùn)用等,力爭(zhēng)營(yíng)造一種愉快、輕松的氛圍,創(chuàng)建一個(gè)有助于師生,生生思維交流的“情感場(chǎng)”,使數(shù)學(xué)教學(xué)更具有生命力,感染力。使學(xué)生在感悟數(shù)學(xué)的過(guò)程中感受數(shù)學(xué)的魅力,體驗(yàn)數(shù)學(xué)產(chǎn)生的美感與幸福感。
通過(guò)這節(jié)課的學(xué)習(xí),不僅復(fù)習(xí)鞏固了舊知識(shí),使學(xué)生掌握了新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),而且培養(yǎng)了學(xué)生的應(yīng)用意識(shí)和實(shí)踐操作能力,以及提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
正弦定理教案篇九
本節(jié)是“正弦定理”定理的第一節(jié),設(shè)計(jì)從直角三角形出發(fā),通過(guò)學(xué)生的探究活動(dòng),引導(dǎo)學(xué)生提出問(wèn)題,通過(guò)證明、歸納、應(yīng)用為線索,把問(wèn)題展現(xiàn)給學(xué)生,從而引入并證明正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的.知識(shí),有效提高學(xué)生解決問(wèn)題的能力。
本節(jié)設(shè)計(jì)注重知識(shí)建構(gòu)過(guò)程和學(xué)生主題地位的體現(xiàn),從學(xué)生熟悉的直角三角形邊角關(guān)系,到銳角三角形、鈍角三角形的討論,滲透了分類(lèi)討論思想和數(shù)形結(jié)合思想。
在正弦定理的推導(dǎo)過(guò)程中,引導(dǎo)學(xué)生采用不同方法證明正弦定理,學(xué)生比較容易聯(lián)想到利用三角函數(shù)定義或三角形面積進(jìn)行論證,使學(xué)生不斷發(fā)現(xiàn)規(guī)律,得出在斜三角形中邊與角的關(guān)系,多種方法的證明有利于學(xué)生思維能力的拓展,有助于加強(qiáng)學(xué)生解題的靈活度。
由于教學(xué)時(shí)間的超時(shí),說(shuō)明教學(xué)存在對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,教學(xué)過(guò)程中時(shí)間的分配不夠適當(dāng),教學(xué)語(yǔ)言不夠精簡(jiǎn),今后一定避免此類(lèi)問(wèn)題,爭(zhēng)取更大的進(jìn)步。
正弦定理教案篇十
掌握正弦定理及推導(dǎo)過(guò)程,會(huì)利用正弦定理證明簡(jiǎn)單三角形以及求解三角形邊角問(wèn)題。
【過(guò)程與方法】。
通過(guò)三角函數(shù),向量數(shù)量積等多處知識(shí)間聯(lián)系來(lái)體現(xiàn)事物之間普遍聯(lián)系與辯證統(tǒng)一。
【情感態(tài)度與價(jià)值觀】。
問(wèn)題分析解決過(guò)程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
【重點(diǎn)】。
【難點(diǎn)】。
正弦定理的證明,正弦定理在解三角形應(yīng)用思路。
(一)導(dǎo)入新課。
提出問(wèn)題:在初中已經(jīng)學(xué)習(xí)過(guò)解直角三角形,已會(huì)根據(jù)直角三角形中已知的邊與角,求出未知的邊與角,直角三角形存在如下邊角關(guān)系,在一個(gè)三角形中各邊和他所對(duì)角的正弦之比相等(畫(huà)圖展示直角三角形圖形,引導(dǎo)得出正弦定理公式形式),帶領(lǐng)學(xué)生猜測(cè)對(duì)任意三角形都成立?這就是這一節(jié)課主要研究的.課題。
(二)生成新知。
提問(wèn):驗(yàn)證任意三角形成立?還需要驗(yàn)證哪些三角形結(jié)論成立?
預(yù)設(shè)學(xué)生回答銳角三角形,鈍角三角形。
思考:嘗試用其他方法證明正弦定理。
提問(wèn):觀察正弦定理的結(jié)構(gòu),這個(gè)式子包含了哪些等式,每個(gè)等式有幾個(gè)量?
學(xué)生小組討論總結(jié),三個(gè)等式,每個(gè)式子有四個(gè)量,如果知道其中三個(gè)可以求出第四個(gè)。
(三)鞏固提高。
課本例一,例二,思考利用正弦定理,可以解決斜三角形哪些類(lèi)型的問(wèn)題。
小組討論,師生共同總結(jié)正弦定理解決的兩類(lèi)斜三角形問(wèn)題。
(四)小結(jié)作業(yè)。
小結(jié):提問(wèn)學(xué)生本節(jié)課有什么收獲,闡述正弦定理公式,及解決的問(wèn)題。
作業(yè):思考嘗試用其他方法證明正弦定理。
(略)。
正弦定理教案篇十一
《余弦定理》選自人教a版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時(shí)。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運(yùn)用余弦定理解決“兩邊一夾角”“三邊”的解三角形問(wèn)題。
余弦定理的學(xué)習(xí)有充分的基礎(chǔ),初中的勾股定理、必修一中的向量知識(shí)、上一課時(shí)的正弦定理都是本節(jié)課內(nèi)容學(xué)習(xí)的知識(shí)基礎(chǔ),同時(shí)又對(duì)本節(jié)課的學(xué)習(xí)提供了一定的方法指導(dǎo)。其次,余弦定理在高中解三角形問(wèn)題中有著重要的地位,是解決各種解三角形問(wèn)題的常用方法,余弦定理也經(jīng)常運(yùn)用于空間幾何中,所以余弦定理是高中數(shù)學(xué)學(xué)習(xí)的一個(gè)十分重要的內(nèi)容。
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導(dǎo)、證明過(guò)程。
3、能運(yùn)用余弦定理及其推論解決“兩邊一夾角”“三邊”問(wèn)題。
1、通過(guò)從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題,培養(yǎng)學(xué)生知識(shí)的遷移能力。
2、通過(guò)直角三角形到一般三角形的過(guò)渡,培養(yǎng)學(xué)生歸納總結(jié)能力。
3、通過(guò)余弦定理推導(dǎo)證明的過(guò)程,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
1、在交流合作的過(guò)程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗(yàn) 解決問(wèn)題的成功喜悅。
2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。
重點(diǎn):余弦定理及其推論和余弦定理的運(yùn)用。
難點(diǎn):余弦定理的發(fā)現(xiàn)和推導(dǎo)過(guò)程以及多解情況的判斷。
普通教學(xué)工具、多媒體工具 (以上均為命題教學(xué)的準(zhǔn)備)
正弦定理教案篇十二
《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個(gè)重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過(guò)了正弦函數(shù)和余弦函數(shù),知識(shí)儲(chǔ)備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實(shí)際生活中許多測(cè)量問(wèn)題的工具。因此熟練掌握正弦定理能為接下來(lái)學(xué)習(xí)解三角形打下堅(jiān)實(shí)基礎(chǔ),并能在實(shí)際應(yīng)用中靈活變通。
二、教學(xué)目標(biāo)。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。
能力目標(biāo):探索正弦定理的證明過(guò)程,用歸納法得出結(jié)論,并能掌握多種證明方法。
情感目標(biāo):通過(guò)推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。
三、教學(xué)重難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
四、教法分析。
依據(jù)本節(jié)課內(nèi)容的特點(diǎn),學(xué)生的認(rèn)識(shí)規(guī)律,本節(jié)知識(shí)遵循以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,采用與學(xué)生共同探索的教學(xué)方法,命題教學(xué)的發(fā)生型模式,以問(wèn)題實(shí)際為參照對(duì)象,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化,并且運(yùn)用例題和習(xí)題來(lái)強(qiáng)化內(nèi)容的掌握,突破重難點(diǎn)。即指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法。學(xué)生采用自主式、合作式、探討式的學(xué)習(xí)方法,這樣能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生的合作意識(shí)和探究精神。
五、教學(xué)過(guò)程。
本節(jié)知識(shí)教學(xué)采用發(fā)生型模式:
1、問(wèn)題情境。
此題可運(yùn)用做輔助線bc邊上的高來(lái)間接求解得出。
提問(wèn):有沒(méi)有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來(lái)的方法?
2、歸納命題。
我們從特殊的三角形直角三角形中來(lái)探討邊與角的數(shù)量關(guān)系:
在如圖rt三角形abc中,根據(jù)正弦函數(shù)的定義。
正弦定理教案篇十三
本節(jié)課為《動(dòng)能和動(dòng)能定理》的復(fù)習(xí)課,教學(xué)目標(biāo)是掌握動(dòng)能概念,理解動(dòng)能定理,并能在實(shí)際問(wèn)題中熟練應(yīng)用。
本節(jié)課從教學(xué)設(shè)計(jì)上來(lái)說(shuō),提問(wèn)問(wèn)題設(shè)計(jì)語(yǔ)言不巧妙,意圖不明確,會(huì)使學(xué)生不知道如何回答。這與自己備課時(shí)沒(méi)有認(rèn)真思考提問(wèn)語(yǔ)言,想著直來(lái)直去的提問(wèn)或者直接提問(wèn)學(xué)生最明白,而實(shí)際上是恰恰相反,提問(wèn)一個(gè)問(wèn)題之前最好能做一個(gè)簡(jiǎn)單的問(wèn)題引入,或給學(xué)生以適當(dāng)?shù)奶崾?,這樣應(yīng)該會(huì)好點(diǎn)。在概念的梳理上,應(yīng)做到更加簡(jiǎn)練,節(jié)約時(shí)間,提高效率。在例題的選擇上,應(yīng)追求對(duì)例題講解透徹,從一個(gè)問(wèn)題中可以引申多個(gè)問(wèn)題,或者增加變式,引發(fā)學(xué)生全方位思考,從而理解透徹,而不是追求多而不精。一節(jié)課要想讓人留下深刻印象,需要有亮點(diǎn),在復(fù)習(xí)課中對(duì)典型例題濃墨重彩,是讓課出彩的一種方法。比如最后的一個(gè)例題,是一個(gè)很好的動(dòng)態(tài)生成資源,學(xué)生在解題過(guò)程中會(huì)出現(xiàn)各種各樣的問(wèn)題,因此可在此題上多加設(shè)計(jì)。另外要注重學(xué)生思維力度,合力設(shè)置問(wèn)題,為學(xué)生鋪設(shè)好臺(tái)階,加深學(xué)生理解。
在教學(xué)模式上,復(fù)習(xí)課宜采用導(dǎo)練的方式。與學(xué)生點(diǎn)對(duì)點(diǎn)的互動(dòng)起到的效果較差,一個(gè)學(xué)生回答時(shí),其余學(xué)生會(huì)顯得無(wú)所事事。宜采用學(xué)生相互補(bǔ)充相互評(píng)價(jià)的方法,讓整個(gè)課堂有緊迫感。
正弦定理教案篇十四
即直角三角形兩直角的平方和等于斜邊的平方.。
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.。
請(qǐng)讀者證明.。
請(qǐng)同學(xué)們自己證明圖(2)、(3).。
3.在數(shù)軸上表示無(wú)理數(shù)。
二、典例精析。
132-52=144,所以另一條直角邊的長(zhǎng)為12.。
所以這個(gè)直角三角形的面積是×12×5=30(cm2).。
例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到。
頂點(diǎn)b,則它走過(guò)的最短路程為。
a.b.c.3ad.分析:本題顯然與例2屬同種類(lèi)型,思路相同.但正方體的。
各棱長(zhǎng)相等,因此只有一種展開(kāi)圖.。
解:將正方體側(cè)面展開(kāi)。
正弦定理教案篇十五
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問(wèn)題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過(guò)對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問(wèn)題、解決問(wèn)題等研究性學(xué)習(xí)的能力。
二、學(xué)情分析。
對(duì)高一的學(xué)生來(lái)說(shuō),一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問(wèn)題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問(wèn)題、解決問(wèn)題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來(lái)理解就是:知識(shí)不僅是通過(guò)教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過(guò)與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問(wèn)題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性。
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類(lèi)基本問(wèn)題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無(wú)解三種情況。
3、通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來(lái)源于生活,又服務(wù)與生活。
五、教學(xué)重點(diǎn)與難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
突破難點(diǎn)的手段:抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
六、復(fù)習(xí)引入:
結(jié)論:
證明:(向量法)過(guò)a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
七、教學(xué)反思。
本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個(gè)問(wèn)題需要精心設(shè)計(jì)。一個(gè)是問(wèn)題的引入,一個(gè)是定理的證明。通過(guò)兩個(gè)實(shí)際問(wèn)題引入,讓學(xué)生體會(huì)為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問(wèn)題的方法。具體的思路就是從解決課本的實(shí)際問(wèn)題入手展開(kāi),將問(wèn)題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問(wèn)題的能力。
1、在教學(xué)過(guò)程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會(huì)數(shù)學(xué)問(wèn)題是如何解決的,給學(xué)生解決問(wèn)題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問(wèn)題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類(lèi)討論思想和數(shù)形結(jié)合思想等思想。
2、在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。利用《幾何畫(huà)板》探究比值的值,由動(dòng)到靜,取得了很好的效果,加深了學(xué)生的印象。
3、由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時(shí)間的超時(shí),這說(shuō)明我自己對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過(guò)程中時(shí)間的分配不夠適當(dāng),教學(xué)語(yǔ)言不夠精簡(jiǎn),今后我一定避免此類(lèi)問(wèn)題,爭(zhēng)取更大的進(jìn)步。
正弦定理教案篇十六
正弦定理是高中數(shù)學(xué)中的一個(gè)重要的定理,它是用來(lái)解決三角形中邊與角的關(guān)系的一個(gè)公式。通過(guò)正弦定理,我們可以計(jì)算出三角形中任意一個(gè)角對(duì)應(yīng)的邊長(zhǎng),或者任意一條邊對(duì)應(yīng)的角度大小。正弦定理在數(shù)學(xué)中有著廣泛的應(yīng)用,不僅僅用于求解三角形中的性質(zhì)問(wèn)題,還可以應(yīng)用在物理、工程等多個(gè)方面。
第二段:學(xué)習(xí)正弦定理的方法與技巧。
要掌握正弦定理,首先我們需要熟悉它的公式。正弦定理的公式為:a/sinA=b/sinB=c/sinC。其中a、b、c為三角形三邊的長(zhǎng)度,A、B、C為對(duì)應(yīng)的角度。在使用正弦定理時(shí),我們需要明確需要求解的是哪個(gè)角度或邊長(zhǎng),然后根據(jù)公式進(jìn)行計(jì)算。在解題時(shí)要注意單位的統(tǒng)一,要么全部使用角度,要么全部使用弧度。此外,我們還需要掌握三角函數(shù)的相關(guān)概念與計(jì)算方法,對(duì)于常見(jiàn)的三角函數(shù)值需要有充分的了解。
通過(guò)正弦定理,我們不僅能夠求解三角形中各個(gè)角度大小和邊長(zhǎng),還可以應(yīng)用在解決實(shí)際問(wèn)題中。例如在物理學(xué)中,正弦定理被廣泛應(yīng)用在計(jì)算運(yùn)動(dòng)物體的速度、力量等參數(shù);在建筑工程中,正弦定理可以用于計(jì)算梯子的長(zhǎng)度、塔吊與建筑物之間的距離等;在地理學(xué)中,正弦定理可以用于計(jì)算地球表面上的距離和高度等。因此,掌握正弦定理對(duì)于學(xué)科知識(shí)的深度理解和應(yīng)用更為重要。
正弦定理在中高等數(shù)學(xué)競(jìng)賽中也常常出現(xiàn)。物理、數(shù)學(xué)、化學(xué)等各個(gè)領(lǐng)域的競(jìng)賽中都有大量的幾何題涉及到正弦定理。通過(guò)競(jìng)賽的學(xué)習(xí),不僅能夠更好地掌握正弦定理的應(yīng)用與技巧,還能夠以較高的分?jǐn)?shù)鞏固對(duì)這一知識(shí)點(diǎn)的理解。
第五段:結(jié)論。
正弦定理是數(shù)學(xué)中一項(xiàng)重要的基礎(chǔ)工具。它的提出和應(yīng)用給數(shù)學(xué)研究和實(shí)際應(yīng)用帶來(lái)了巨大的貢獻(xiàn)。在學(xué)習(xí)正弦定理時(shí),我們需要扎實(shí)地掌握公式和計(jì)算方法,并在解決實(shí)際問(wèn)題中靈活應(yīng)用。更進(jìn)一步地說(shuō),我們需要掌握更多數(shù)學(xué)思維,進(jìn)一步地推進(jìn)數(shù)學(xué)應(yīng)用和創(chuàng)新發(fā)展。
正弦定理教案篇十七
正弦定理是初中數(shù)學(xué)中比較重要和難理解的部分,很多同學(xué)甚至老師都對(duì)其感到頭疼。但是,正弦定理不僅是數(shù)學(xué)中的重要概念,還有著豐富的實(shí)際應(yīng)用。在學(xué)習(xí)正弦定理后,我從中學(xué)到了很多有益的知識(shí)和經(jīng)驗(yàn),下面我將分享我的心得體會(huì)。
正弦定理是指一個(gè)三角形中,邊長(zhǎng)和對(duì)應(yīng)的角度的關(guān)系公式。其中一個(gè)角度的正弦等于與其對(duì)邊的長(zhǎng)度之一的比例,即sinA=a/b。正弦定理可以通過(guò)cosB,cosC的余弦公式而推出,可以方便計(jì)算三角形的邊長(zhǎng)和角度。對(duì)于初學(xué)者來(lái)說(shuō),重要的是能夠理解公式的本質(zhì),同時(shí)也體會(huì)到了科學(xué)的推理方法。
第三段:在計(jì)算中的應(yīng)用。
正弦定理在生活和學(xué)習(xí)中都有很大的應(yīng)用價(jià)值。例如,在航海和導(dǎo)航中,我們經(jīng)常需要利用正弦定理計(jì)算船或車(chē)等運(yùn)動(dòng)物體的位置和角度。在建筑方面,正弦定理甚至可以計(jì)算出大樓、橋梁和塔等構(gòu)造物的高度和角度。除此之外,正弦定理在數(shù)學(xué)應(yīng)用中也是非常重要的,能夠解決許多難題,如解三角函數(shù)方程、求角度等。
第四段:學(xué)習(xí)體會(huì)。
在學(xué)習(xí)正弦定理的過(guò)程中,我發(fā)現(xiàn)一個(gè)重要的問(wèn)題就是需要對(duì)三角函數(shù)有清晰的認(rèn)識(shí)。也就是說(shuō),在學(xué)習(xí)正弦定理之前,我們需要認(rèn)真學(xué)習(xí)三角函數(shù)的其他部分,例如正切和余弦等。同時(shí),不斷練習(xí),多做習(xí)題對(duì)于記住和掌握公式也是非常有益的。此外,我也學(xué)會(huì)了在認(rèn)真理解和熟練應(yīng)用的同時(shí),將其運(yùn)用到實(shí)際問(wèn)題的解決中,這不僅可以提高學(xué)習(xí)興趣,還能拓展解決問(wèn)題的思路。
第五段:結(jié)論。
總體來(lái)說(shuō),正弦定理不僅是數(shù)學(xué)中的重要概念,也有廣泛而且實(shí)際應(yīng)用價(jià)值。學(xué)習(xí)正弦定理可以提高數(shù)學(xué)應(yīng)用能力和推理思維能力,同時(shí)也能減少發(fā)生計(jì)算錯(cuò)誤的可能。在學(xué)習(xí)的過(guò)程中,我們需要認(rèn)真學(xué)習(xí)和理解每一個(gè)公式,多經(jīng)過(guò)練習(xí)和應(yīng)用,最后將其應(yīng)用到實(shí)際問(wèn)題中。相信一定可以有所收獲,提高自身的學(xué)習(xí)和應(yīng)用能力。
正弦定理教案篇十八
正弦定理是高中新教材人教a版必修五第一章1.1.1的內(nèi)容,是學(xué)生在已有知識(shí)的基礎(chǔ)上,通過(guò)對(duì)三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形的邊長(zhǎng)與角度之間的數(shù)量關(guān)系。提出兩個(gè)實(shí)際問(wèn)題,并指出解決問(wèn)題的關(guān)鍵在于研究三角形的邊、角關(guān)系,從而引導(dǎo)學(xué)生產(chǎn)生探索愿望,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)過(guò)程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對(duì)一般三角形進(jìn)行推導(dǎo),并引導(dǎo)學(xué)生分析正弦定理可以解決兩類(lèi)關(guān)于解三角形的問(wèn)題:
(1)已知兩角和一邊,解三角形;。
(2)已知兩邊和其中一邊的對(duì)角,解三角形。
本節(jié)授課對(duì)象是高二學(xué)生,是在學(xué)生學(xué)習(xí)了必修四基本初等函數(shù)和三角恒等變換的.基礎(chǔ)上,由實(shí)際問(wèn)題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。高二學(xué)生對(duì)生產(chǎn)生活問(wèn)題比較感興趣,由實(shí)際問(wèn)題出發(fā)可以激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生產(chǎn)生探索研究的愿望。
知識(shí)與技能目標(biāo)。
能準(zhǔn)確寫(xiě)出正弦定理的符號(hào)表達(dá)式,能夠運(yùn)用正弦定理理解三角形、初步解決某些測(cè)量和幾何計(jì)算有關(guān)的簡(jiǎn)單的實(shí)際問(wèn)題。
過(guò)程與方法目標(biāo)。
通過(guò)對(duì)定理的證明和應(yīng)用,鍛煉獨(dú)立解決問(wèn)題的能力和體會(huì)分類(lèi)討論和數(shù)形結(jié)合的思想方法。
情感態(tài)度價(jià)值觀目標(biāo)。
通過(guò)對(duì)三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動(dòng)的過(guò)程,體會(huì)由特殊到一般再由一般到特殊的認(rèn)識(shí)事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識(shí)。
重點(diǎn)。
難點(diǎn)。
正弦定理的推導(dǎo)與正弦定理的運(yùn)用。
運(yùn)用“發(fā)現(xiàn)問(wèn)題——自主探究——嘗試指導(dǎo)——合作交流”的教學(xué)方式,整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出:師生互動(dòng)、共同探索,教師指導(dǎo)、循序漸進(jìn)。
新課引入——提出問(wèn)題,激發(fā)學(xué)生的求知欲。掌握正弦定理的推導(dǎo)證明——分類(lèi)討論,數(shù)形結(jié)合動(dòng)腦思考,由一般到特殊,組織學(xué)生自主探索,獲得正弦定理及證明過(guò)程。
例題處理——始終由問(wèn)題出發(fā),層層設(shè)疑,讓他們?cè)谔剿髦械玫街R(shí)。鞏固練習(xí),深化對(duì)正弦定理的理解。
(一)導(dǎo)入新課。
我采用的是設(shè)疑導(dǎo)入,進(jìn)行口頭提問(wèn):
設(shè)計(jì)意圖:通過(guò)生活中的知識(shí)引入,激發(fā)學(xué)生學(xué)習(xí)需要和學(xué)習(xí)期待,以問(wèn)題引起學(xué)生學(xué)習(xí)熱情和探索新知的欲望。讓學(xué)生積極主動(dòng)的參與到課堂里面來(lái),更好的調(diào)動(dòng)學(xué)習(xí)氛圍。
(二)新課教學(xué)。
1.復(fù)習(xí)舊知。
帶動(dòng)學(xué)生回憶以前學(xué)過(guò)的知識(shí),并設(shè)置如下問(wèn)題引導(dǎo)學(xué)生思考,減少學(xué)生對(duì)新知識(shí)的陌生感。
正弦定理教案篇十九
“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來(lái),并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問(wèn)題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過(guò)對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過(guò)這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問(wèn)題”抽象成“數(shù)學(xué)問(wèn)題”的建模過(guò)程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問(wèn)題的過(guò)程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
二、學(xué)情分析。
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
三、教學(xué)目標(biāo)。
1、知識(shí)和技能:在創(chuàng)設(shè)的問(wèn)題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問(wèn)題。
過(guò)程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過(guò)平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來(lái)體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過(guò)實(shí)際問(wèn)題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹(shù)立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
四、教學(xué)方法與手段。
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問(wèn)題教學(xué)法”,即由教師以問(wèn)題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來(lái)激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的`學(xué)習(xí)方式參與到問(wèn)題解決的過(guò)程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、教學(xué)過(guò)程。
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過(guò)程:
(一)創(chuàng)設(shè)情景,揭示課題。
問(wèn)題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒(méi)必要親自去量,只需水平飛行的飛機(jī)從山頂一過(guò)便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車(chē)的速度呢?要想解決這些問(wèn)題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書(shū)課題《解三角形》)。
[設(shè)計(jì)說(shuō)明]引用教材本章引言,制造知識(shí)與問(wèn)題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律。
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
(三)類(lèi)比歸納,嚴(yán)格證明。
[設(shè)計(jì)說(shuō)明]此時(shí)放手讓學(xué)生自己完成,如果感覺(jué)自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過(guò)程中讓不同方法的學(xué)生上黑板展示,如果沒(méi)有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
正弦定理教案篇二十
一、教學(xué)內(nèi)容:
本節(jié)課主要通過(guò)對(duì)實(shí)際問(wèn)題的探索,構(gòu)建數(shù)學(xué)模型,利用數(shù)學(xué)實(shí)驗(yàn)猜想發(fā)現(xiàn)正弦定理,并從理論上加以證實(shí),最后進(jìn)行簡(jiǎn)單的應(yīng)用。
二、教材分析:
1、教材地位與作用:本節(jié)內(nèi)容安排在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)。數(shù)學(xué)必修5》(a版)第一章中,是在高二學(xué)生學(xué)習(xí)了三角等知識(shí)之后安排的,顯然是對(duì)三角知識(shí)的應(yīng)用;同時(shí),作為三角形中的一個(gè)定理,也是對(duì)初中解直角三角形內(nèi)容的直接延伸,而定理本身的應(yīng)用(定理應(yīng)用放在下一節(jié)專門(mén)研究)又十分廣泛,因此做好該節(jié)內(nèi)容的教學(xué),使學(xué)生通過(guò)對(duì)任意三角形中正弦定理的探索、發(fā)現(xiàn)和證實(shí),感受“類(lèi)比--猜想--證實(shí)”的科學(xué)研究問(wèn)題的思路和方法,體會(huì)由“定性研究到定量研究”這種數(shù)學(xué)地思考問(wèn)題和研究問(wèn)題的思想,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。
2、教學(xué)重點(diǎn)和難點(diǎn):重點(diǎn)是正弦定理的發(fā)現(xiàn)和證實(shí);難點(diǎn)是三角形外接圓法證實(shí)。
三、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
2、能力目標(biāo):
(1)通過(guò)對(duì)實(shí)際問(wèn)題的探索,培養(yǎng)學(xué)生數(shù)學(xué)地觀察問(wèn)題、提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力。
(2)增強(qiáng)學(xué)生的協(xié)作能力和數(shù)學(xué)交流能力。
(3)發(fā)展學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。
3、情感態(tài)度與價(jià)值觀:
(1)通過(guò)學(xué)生自主探索、合作交流,親身體驗(yàn)數(shù)學(xué)規(guī)律的發(fā)現(xiàn),培養(yǎng)學(xué)生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的創(chuàng)新品質(zhì),增強(qiáng)學(xué)習(xí)的成功心理,激發(fā)學(xué)習(xí)數(shù)學(xué)的愛(ài)好。
(2)通過(guò)實(shí)例的社會(huì)意義,培養(yǎng)學(xué)生的愛(ài)國(guó)主義情感和為祖國(guó)努力學(xué)習(xí)的責(zé)任心。
本節(jié)課采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以四周世界和生活實(shí)際為參照對(duì)象,為學(xué)生提供充分自由表達(dá)、質(zhì)疑、探究、討論問(wèn)題的機(jī)會(huì),讓學(xué)生通過(guò)個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的深入探討。讓學(xué)生在“活動(dòng)”中學(xué)習(xí),在“主動(dòng)”中發(fā)展,在“合作”中增知,在“探究”中創(chuàng)新。設(shè)計(jì)思路如下:
正弦定理教案篇二十一
“正弦定理”既是初中“解直角三角形”內(nèi)容的直接延拓,也是三角函數(shù)一般知識(shí)和平面向量知識(shí)在三角形中的具體運(yùn)用,是解可轉(zhuǎn)化為三角形計(jì)算問(wèn)題的其它數(shù)學(xué)問(wèn)題及生產(chǎn)、生活實(shí)際問(wèn)題的重要工具,因此具有廣泛的應(yīng)用價(jià)值。本節(jié)課是第七章的第一課時(shí):“正弦定理”教學(xué)的第一節(jié)課,其主要任務(wù)是證明正弦定理并準(zhǔn)確應(yīng)用正弦定理。在備課中有兩個(gè)問(wèn)題需要精心設(shè)計(jì).一個(gè)是定理的證明,一個(gè)是正弦定理的應(yīng)用的問(wèn)題串。
課本通過(guò)一個(gè)實(shí)際問(wèn)題引入,但沒(méi)有深入展開(kāi)下去,只是點(diǎn)出繼續(xù)學(xué)習(xí)“解三角形”問(wèn)題的`意義;正弦定理的證明方法很多,如利用三角形的面積公式、利用三角形的外接圓、利用向量證明等。
從中職學(xué)生的認(rèn)知出發(fā),設(shè)計(jì)從直角三角形出發(fā),通過(guò)學(xué)生的探究活動(dòng),引導(dǎo)學(xué)生提出問(wèn)題,通過(guò)證明、歸納、應(yīng)用為線索,把問(wèn)題展現(xiàn)給學(xué)生,從而引入并證明正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問(wèn)題的能力。本節(jié)設(shè)計(jì)注重知識(shí)建構(gòu)過(guò)程和學(xué)生主題地位的體現(xiàn),從學(xué)生熟悉的直角三角形邊角關(guān)系,到銳角三角形、鈍角三角形的討論,滲透了分類(lèi)討論思想和數(shù)形結(jié)合思想。從學(xué)生的“最近發(fā)展區(qū)”入手去設(shè)計(jì)問(wèn)題,從特殊到一般,從歸納猜想到實(shí)驗(yàn)證明,培養(yǎng)學(xué)生的探究問(wèn)題的科學(xué)方法,思路自然,是學(xué)生們易于接受的一種證明方法。但在具體的推導(dǎo)時(shí),要注意尊重學(xué)生思維的發(fā)展的過(guò)程,這是一種理念,也是一種能力.
問(wèn)題是思維的起點(diǎn),是學(xué)生主動(dòng)探索的動(dòng)力.本節(jié)課通過(guò)對(duì)課本引例的解決、展開(kāi),引導(dǎo)學(xué)生在問(wèn)題解決中發(fā)現(xiàn)結(jié)論.符合認(rèn)識(shí)問(wèn)題的思維規(guī)律,對(duì)激發(fā)學(xué)生探究問(wèn)題興趣是非常有益的.傳統(tǒng)式的課傳授完新知識(shí)后,一般教師都會(huì)馬上以“舉一反三”的模式來(lái)鞏固新知識(shí)。但在此我進(jìn)行了小小的設(shè)計(jì),讓學(xué)生分析正弦定理的特點(diǎn)和幾種變形;涉及了三角形哪些元素?可以解決哪類(lèi)數(shù)學(xué)問(wèn)題?讓學(xué)生做到“學(xué)會(huì)數(shù)學(xué),會(huì)學(xué)數(shù)學(xué)”。新的環(huán)節(jié)引起了學(xué)生濃厚的興趣,教室內(nèi)學(xué)生熱烈的討論,爭(zhēng)論也出現(xiàn)了,特別是已知二邊一角的問(wèn)題,哪種能直接應(yīng)用,哪種不能直接應(yīng)用,學(xué)生有一個(gè)系統(tǒng)的認(rèn)知。這又為后續(xù)課程—余弦定理打下了伏筆。
本節(jié)課雖然在教師的引導(dǎo)下,基本完成了教學(xué)任務(wù),由于教學(xué)時(shí)間的超時(shí),說(shuō)明教學(xué)存在對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,教學(xué)設(shè)計(jì)的是否恰當(dāng)?教學(xué)過(guò)程中時(shí)間的分配不夠適當(dāng),師生配合的程度是否默契?教學(xué)語(yǔ)言不夠精簡(jiǎn),今后一定避免此類(lèi)問(wèn)題,爭(zhēng)取更大的進(jìn)步。
正弦定理教案篇二十二
教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題。
教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用。
教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用。
引
二.探。
閱讀教材p44至p45。
利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說(shuō)出你的做法及其道理嗎?
(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
證一證。
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
證明:(畫(huà)出圖形)。
平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
證明:(畫(huà)出圖形)。
三.結(jié)。
兩組對(duì)邊分別相等的四邊形是平行四邊形。
對(duì)角線互相平分的四邊形是平行四邊形。
四.用。
【本文地址:http://aiweibaby.com/zuowen/14731999.html】