人際關(guān)系對(duì)個(gè)人成長(zhǎng)和生活幸福有著重要影響,我們應(yīng)該注重如何建立良好的人際關(guān)系。在寫總結(jié)時(shí),要注重突出事物的本質(zhì)和核心,同時(shí)也要注意邏輯嚴(yán)密和語言簡(jiǎn)練??偨Y(jié)范文的閱讀不僅能拓寬我們的思路和視野,也能給我們帶來一些新的思考和認(rèn)識(shí)。
正弦定理說課稿篇一
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo)。
1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;
2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).
2、過程與方法:通過對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。
3、情感、態(tài)度價(jià)值觀培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。
(三)、學(xué)情分析:
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。
(一)復(fù)習(xí)回顧。
復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。
(二)創(chuàng)設(shè)問題情境。
造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)。
因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對(duì)初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的.,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對(duì)照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)組織變式訓(xùn)練。
本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(五)歸納小結(jié),納入知識(shí)體系。
告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
(六)作業(yè)布置。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。
總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。
將本文的word文檔下載到電腦,方便收藏和打印。
正弦定理說課稿篇二
“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
二、學(xué)情分析。
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
三、教學(xué)目標(biāo)。
1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
四、教學(xué)方法與手段。
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的`學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
五、教學(xué)過程。
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題。
問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)。
[設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律。
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
(三)類比歸納,嚴(yán)格證明。
[設(shè)計(jì)說明]此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵(lì)學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。
正弦定理說課稿篇三
正弦定理是高中新教材人教a版必修五第一章1.1.1的內(nèi)容,是學(xué)生在已有知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形的邊長(zhǎng)與角度之間的數(shù)量關(guān)系。提出兩個(gè)實(shí)際問題,并指出解決問題的關(guān)鍵在于研究三角形的邊、角關(guān)系,從而引導(dǎo)學(xué)生產(chǎn)生探索愿望,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)過程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對(duì)一般三角形進(jìn)行推導(dǎo),并引導(dǎo)學(xué)生分析正弦定理可以解決兩類關(guān)于解三角形的問題:
(1)已知兩角和一邊,解三角形;。
(2)已知兩邊和其中一邊的對(duì)角,解三角形。
本節(jié)授課對(duì)象是高二學(xué)生,是在學(xué)生學(xué)習(xí)了必修四基本初等函數(shù)和三角恒等變換的.基礎(chǔ)上,由實(shí)際問題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。高二學(xué)生對(duì)生產(chǎn)生活問題比較感興趣,由實(shí)際問題出發(fā)可以激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生產(chǎn)生探索研究的愿望。
知識(shí)與技能目標(biāo)。
能準(zhǔn)確寫出正弦定理的符號(hào)表達(dá)式,能夠運(yùn)用正弦定理理解三角形、初步解決某些測(cè)量和幾何計(jì)算有關(guān)的簡(jiǎn)單的實(shí)際問題。
過程與方法目標(biāo)。
通過對(duì)定理的證明和應(yīng)用,鍛煉獨(dú)立解決問題的能力和體會(huì)分類討論和數(shù)形結(jié)合的思想方法。
情感態(tài)度價(jià)值觀目標(biāo)。
通過對(duì)三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動(dòng)的過程,體會(huì)由特殊到一般再由一般到特殊的認(rèn)識(shí)事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識(shí)。
重點(diǎn)。
難點(diǎn)。
正弦定理的推導(dǎo)與正弦定理的運(yùn)用。
運(yùn)用“發(fā)現(xiàn)問題——自主探究——嘗試指導(dǎo)——合作交流”的教學(xué)方式,整堂課圍繞“一切為了學(xué)生發(fā)展”的教學(xué)原則,突出:師生互動(dòng)、共同探索,教師指導(dǎo)、循序漸進(jìn)。
新課引入——提出問題,激發(fā)學(xué)生的求知欲。掌握正弦定理的推導(dǎo)證明——分類討論,數(shù)形結(jié)合動(dòng)腦思考,由一般到特殊,組織學(xué)生自主探索,獲得正弦定理及證明過程。
例題處理——始終由問題出發(fā),層層設(shè)疑,讓他們?cè)谔剿髦械玫街R(shí)。鞏固練習(xí),深化對(duì)正弦定理的理解。
(一)導(dǎo)入新課。
我采用的是設(shè)疑導(dǎo)入,進(jìn)行口頭提問:
設(shè)計(jì)意圖:通過生活中的知識(shí)引入,激發(fā)學(xué)生學(xué)習(xí)需要和學(xué)習(xí)期待,以問題引起學(xué)生學(xué)習(xí)熱情和探索新知的欲望。讓學(xué)生積極主動(dòng)的參與到課堂里面來,更好的調(diào)動(dòng)學(xué)習(xí)氛圍。
(二)新課教學(xué)。
1.復(fù)習(xí)舊知。
帶動(dòng)學(xué)生回憶以前學(xué)過的知識(shí),并設(shè)置如下問題引導(dǎo)學(xué)生思考,減少學(xué)生對(duì)新知識(shí)的陌生感。
正弦定理說課稿篇四
尊敬的各位考官:
大家好,我是今天的x號(hào)考生,今天我說課的題目是《正弦定理》。
新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。
教師對(duì)教材的掌握程度,是評(píng)判一位教師是否能上好一堂課的基本標(biāo)準(zhǔn)。在正式內(nèi)容開始之前,我要先談一談對(duì)教材的理解。
《正弦定理》是人教a版必修5第一章第一節(jié)的內(nèi)容,其主要內(nèi)容是正弦定理及其應(yīng)用。此前學(xué)習(xí)了三角函數(shù)的相關(guān)知識(shí),且積累很多的證明、推導(dǎo)的經(jīng)驗(yàn),為本節(jié)課的學(xué)習(xí)都起到了一定的鋪墊作用。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。因此本節(jié)的學(xué)習(xí)有著極其重要的地位。
合理把握學(xué)情是上好一堂課的基礎(chǔ),下面我來談?wù)剬W(xué)生的實(shí)際情況。
這一階段的學(xué)生已經(jīng)具備了一定的分析問題、解決問題的能力,且在知識(shí)方面也有了一定的積累。所以,教學(xué)中,利用學(xué)生的特點(diǎn)以及原有經(jīng)驗(yàn)進(jìn)行教學(xué),增強(qiáng)學(xué)生的課堂參與度。
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識(shí)與技能
能證明正弦定理,并能利用正弦定理解決實(shí)際問題。
(二)過程與方法
通過正弦定理的推導(dǎo)過程,提高分析問題、解決問題的能力。
(三)情感、態(tài)度與價(jià)值觀
在正弦定理的推導(dǎo)過程中,感受數(shù)學(xué)的嚴(yán)謹(jǐn),提升對(duì)數(shù)學(xué)的興趣。
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)為:正弦定理。難點(diǎn):正弦定理的證明。
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、啟發(fā)法、練習(xí)法、小組合作、自主探究等教學(xué)方法。
在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項(xiàng)活動(dòng)的安排也注重互動(dòng)、交流,最大限度的調(diào)動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。
(一)導(dǎo)入新課
首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。
復(fù)習(xí)初中學(xué)習(xí)的任意三角形中的邊和角存在什么樣的關(guān)系。在學(xué)生回顧之后,再提問:能否得到這個(gè)邊、角關(guān)系準(zhǔn)確量化的表示?引出本節(jié)課學(xué)習(xí)的內(nèi)容——正弦定理。
通過溫故知新的導(dǎo)入方式,能為本節(jié)課的后續(xù)的教學(xué)做好鋪墊。
(二)講解新知
接下來是新課講授環(huán)節(jié),我將分為四部分,分別為在直角三角形中推導(dǎo)正弦定理、在銳角三角形中推導(dǎo)正弦定理、在鈍角三角形中推導(dǎo)正弦定理以及正弦定理的應(yīng)用。
素的過程叫做解三角形。
在介紹完正弦定理后,接下來介紹正弦定理的應(yīng)用。通過提問:我們利用正弦定理可以解決一些怎樣的解三角形問題呢?總結(jié):如果已知三角形的任意兩個(gè)角與一邊,由三角形內(nèi)角和定理,可以計(jì)算出三角形的另一角,并由正弦定理計(jì)算出三角形的另兩邊;如果已知三角形的任意兩邊與其中一邊的對(duì)角,應(yīng)用正弦定理,可以計(jì)算出另一邊的對(duì)角的正弦值,進(jìn)而確定這個(gè)角和三角形其他的邊和角。
整節(jié)課,本著學(xué)生為主體,教師為主導(dǎo)的設(shè)計(jì)理念,結(jié)合教學(xué)內(nèi)容和學(xué)生的特點(diǎn),利用學(xué)生已有的知識(shí)經(jīng)驗(yàn),采用層次性的問題,一步步引導(dǎo)學(xué)生思考交流、發(fā)現(xiàn)知識(shí)。并且在整個(gè)過程中,講授法、引導(dǎo)法、合作探究等多種教學(xué)方法的使用,不但讓學(xué)生學(xué)會(huì)知識(shí),也培養(yǎng)學(xué)生的學(xué)習(xí)能力。通過這樣的設(shè)計(jì),提升學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,提高學(xué)習(xí)數(shù)學(xué)的興趣。
(三)課堂練習(xí)
正弦定理說課稿篇五
尊敬的各位評(píng)委、老師,大家好!
我說課的題目是華師版八年級(jí)上冊(cè)第十四章第一節(jié)第一課時(shí)《勾股定理》。
如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識(shí)的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。
勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。
新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動(dòng)的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:
1、探索并利用拼圖證明勾股定理。
2、利用勾股定理解決簡(jiǎn)單的數(shù)學(xué)問題。
3、感受數(shù)學(xué)文化,體會(huì)解決問題方法的多樣性和數(shù)形結(jié)合的思想。
本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:
勾股定理的證明和簡(jiǎn)單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。
為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對(duì)教法和學(xué)法分析如下:
新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動(dòng)手操作、講解為中心,讓學(xué)生親歷親為,體會(huì)做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動(dòng)的時(shí)間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。
學(xué)法是學(xué)生再生知識(shí)的法寶,為了把學(xué)生學(xué)習(xí)過程當(dāng)作認(rèn)知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動(dòng)手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達(dá)能力。
為了充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進(jìn)的設(shè)計(jì)教學(xué)流程。
1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。
2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對(duì)定理的證明。
3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個(gè)性補(bǔ)充和老師適當(dāng)?shù)膫€(gè)性化追加的形式實(shí)現(xiàn)對(duì)定理的靈活應(yīng)用。
4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識(shí)、情感兩方面實(shí)現(xiàn)對(duì)本節(jié)內(nèi)容的鞏固與升華。
為了給學(xué)生營(yíng)造一個(gè)和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動(dòng)手操作能力的培養(yǎng),化繁為簡(jiǎn),化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動(dòng)手操作、講解等直觀方式代替老師畫圖、剪圖、講評(píng)費(fèi)時(shí)費(fèi)力的方式,既讓每個(gè)學(xué)生都能積極的參與進(jìn)來,培養(yǎng)學(xué)生的語言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的效果。
教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個(gè)性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價(jià)值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。
以學(xué)生個(gè)性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時(shí)間;同時(shí),我注重對(duì)學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時(shí)由“勾股樹”到“智慧樹”的希望寄語。
正弦定理說課稿篇六
尊敬的各位考官:
大家好,我是x號(hào)考生,今天我說課的題目是《勾股定理的逆定理》。
新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。
首先來談一談我對(duì)教材的理解。
本節(jié)課選自人教版初中數(shù)學(xué)八年級(jí)下冊(cè)第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時(shí)本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識(shí)。
接下來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識(shí),處于由幾何內(nèi)容的初級(jí)向高級(jí)行進(jìn)的過程。他們的幾何思維正在逐步形成和發(fā)展,對(duì)幾何題目具有一定的分析、想象、概括能力,具有對(duì)未知事物的新鮮感和探求欲。同時(shí)也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵(lì)與引導(dǎo)并重。
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下教學(xué)目標(biāo):
(一)知識(shí)與技能。
理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
(二)過程與方法。
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
(三)情感、態(tài)度與價(jià)值觀。
體會(huì)事物之間的聯(lián)系,感受幾何的魅力。
在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。
為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。
下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過程的設(shè)計(jì)。
(一)導(dǎo)入新課。
課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時(shí)我會(huì)要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。
通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時(shí)用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。
(二)講解新知。
接下來是最重要的新授環(huán)節(jié)。
請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確。
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。
正弦定理說課稿篇七
(一)教材所處的地位。
這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。
(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:
2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。
3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。
4、通過介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。
(三)本課的教學(xué)重點(diǎn):探索勾股定理。
本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。
教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
(一)提出問題:
首先創(chuàng)設(shè)這樣一個(gè)問題情境:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?問題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過程,而且解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程。
(二)實(shí)驗(yàn)操作:
1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學(xué)生計(jì)算正方形a,b,c的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個(gè)數(shù),還是將c劃分為4個(gè)全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形a,b,c的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。
2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形c的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。
3、給出一個(gè)邊長(zhǎng)為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。
(三)歸納驗(yàn)證:
1、歸納通過對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。
2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過測(cè)量、計(jì)算來驗(yàn)證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語言表示,因?yàn)閷⑽淖终Z言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛國(guó)主義教育。
(四)問題解決:
讓學(xué)生解決開頭的實(shí)際問題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。
(五)課堂小結(jié):
主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。
(六)布置作業(yè):
課本p6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開放題。
1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。
3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。
4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。
正弦定理說課稿篇八
勾股定理就是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它就是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,這就是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國(guó)與熱愛祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。
教學(xué)難點(diǎn):勾股定理的證明。
教法和學(xué)法就是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。
2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。
3、通過演示實(shí)物,要引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。
教師是指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,這也體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。
1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;
(1)這兩個(gè)圖形有什么特點(diǎn)呢?
(2)你能寫出這兩個(gè)圖形的面積嗎?
(3)如何運(yùn)用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對(duì)問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
1、出示練習(xí),學(xué)生分組來解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。
正弦定理說課稿篇九
初略統(tǒng)計(jì),何老師在課堂上,共提出以下8個(gè)問題:
(1)在一般的直角三角形中,有這樣的結(jié)論成立嗎?
(3)使用勾股定理,需要弄清楚什么?
(4)為什么用減法?(在勾股定理的簡(jiǎn)單應(yīng)用這一環(huán)節(jié),用到。
(5)我們是否應(yīng)該在這個(gè)表格中創(chuàng)造直角三角形呢?(引導(dǎo)學(xué)。
(6)那你還能創(chuàng)造出其它勾股數(shù)嗎?
(7)怎么理解東南方向、東北方向?
(8)勾股定理,難道只是為了求斜邊嗎?(在本課小結(jié)環(huán)節(jié))。
以上八個(gè)問題環(huán)環(huán)緊扣,出現(xiàn)的時(shí)機(jī)恰到好處。比如,在應(yīng)用勾股定理時(shí),沒有現(xiàn)成的直角三角形,學(xué)生無從下手。何老師,不失時(shí)機(jī)地問了一句:是否應(yīng)該構(gòu)造一個(gè)直角三角形呢?這樣一個(gè)問題,既非常好地點(diǎn)撥了學(xué)生,又讓學(xué)生深刻地領(lǐng)悟到了勾股定理的使用是有條件的。
發(fā)現(xiàn)定理到證明定理,再到應(yīng)用定理,板塊分明,學(xué)生聽的真切。思路清晰,三個(gè)情景:蝸牛爬行、小鳥飛行、輪船航海,貫穿整個(gè)課堂,從三個(gè)情景里模糊感知定理,從三個(gè)情景里充分應(yīng)用定理,并擴(kuò)充延展定理。
蝸牛爬行涉及到直角三角形的構(gòu)造,回答了第2個(gè)問題;小鳥飛行涉及到勾和股的確定,回答了第3個(gè)問題;輪船航海涉及到直角三角形的尋找。
如果我是一名學(xué)生,很愿意跟著何老師學(xué)習(xí)。他有種讓學(xué)生很安心很靜心的能力,讓學(xué)生有踏實(shí)感,覺得跟著這位老師學(xué)習(xí)一定能學(xué)到東西。
正弦定理說課稿篇十
正弦定理,是指在任意一三角形中,三角形的任意一邊與其對(duì)角的正弦之比皆相等。這學(xué)期我也學(xué)習(xí)了這個(gè)數(shù)學(xué)定理,我們老師常常會(huì)用這個(gè)定理來解決有關(guān)角度和邊長(zhǎng)的問題。剛開始學(xué)習(xí)這個(gè)定理時(shí),我感到十分新奇,畢竟,這是一種以三角函數(shù)為基礎(chǔ)的理論。但隨著學(xué)習(xí)的深入,我發(fā)現(xiàn)正弦定理不僅僅只是一種理論,它也有很多的真實(shí)應(yīng)用。通過學(xué)習(xí)這個(gè)定理,我更深入地了解到了數(shù)學(xué)在各種領(lǐng)域的廣泛應(yīng)用。
第二段:對(duì)正弦定理進(jìn)行詳細(xì)的闡述,解釋其原理及公式。
正弦定理的公式是:a/sinA=b/sinB=c/sinC。其中,a、b、c為三角形的三邊,A、B、C為相應(yīng)的角。正在定理的基礎(chǔ)上,我們可以通過已知兩條邊和它們所對(duì)應(yīng)的角度之一,求出第三條邊,也可以通過已知三條邊中的兩條邊和它們所對(duì)應(yīng)的角之一,求出第三條邊所對(duì)應(yīng)的角度。在數(shù)學(xué)中,正弦定理與余弦定理、正弦余弦定理等一起構(gòu)成了"三角函數(shù)的大合集",是高中數(shù)學(xué)的必修內(nèi)容之一。
雖然正弦定理在解決由角度和邊長(zhǎng)構(gòu)成的三角形問題時(shí)表現(xiàn)出了良好的效果,但在一些情況下,它并不能解決問題。我們?cè)趯?shí)際運(yùn)用中,會(huì)發(fā)現(xiàn)正弦定理求解困難或不切實(shí)際的情況較多,這時(shí)候,我們可以選擇用余弦定理或正弦余弦定理來求解問題。所以,正弦定理只是三角函數(shù)大合集的一個(gè)組成部分,與其他的三角函數(shù)定理一起使用,才能更充分地解決各種三角形問題。
第四段:談?wù)務(wù)叶ɡ淼膶?shí)際應(yīng)用。
在實(shí)際應(yīng)用中,正弦定理被廣泛應(yīng)用于各種領(lǐng)域中。比如在設(shè)計(jì)橋梁和構(gòu)建建筑物時(shí),正弦定理用于計(jì)算角度和邊長(zhǎng)。在天文學(xué)中,正弦定理被用于計(jì)算星際距離以及行星星球的位置和軌道。在航空航天領(lǐng)域中,正弦定理也經(jīng)常被用來計(jì)算行星和衛(wèi)星的速度和加速度等。正弦定理的真實(shí)應(yīng)用甚至不局限于數(shù)學(xué)領(lǐng)域。它也在物理學(xué)、工程學(xué)、計(jì)算機(jī)科學(xué)領(lǐng)域中得到了廣泛應(yīng)用。
第五段:總結(jié)。
綜上所述,正弦定理是數(shù)學(xué)中常用的一種三角函數(shù)定理。雖然它存在一定的局限性,但在解決各種角度和邊長(zhǎng)相關(guān)的問題時(shí),它也表現(xiàn)出了優(yōu)良的效果。同時(shí),正弦定理也廣泛應(yīng)用于各個(gè)領(lǐng)域,使我們更深入地了解數(shù)學(xué)物理學(xué)的真實(shí)應(yīng)用。我相信,在日后的學(xué)習(xí)和實(shí)際運(yùn)用中,我仍會(huì)遇到更多關(guān)于正弦定理的問題和挑戰(zhàn),我會(huì)不斷深入地了解學(xué)習(xí)更多三角函數(shù)的知識(shí),提高自己的能力。
正弦定理說課稿篇十一
掌握正弦定理及推導(dǎo)過程,會(huì)利用正弦定理證明簡(jiǎn)單三角形以及求解三角形邊角問題。
【過程與方法】。
通過三角函數(shù),向量數(shù)量積等多處知識(shí)間聯(lián)系來體現(xiàn)事物之間普遍聯(lián)系與辯證統(tǒng)一。
【情感態(tài)度與價(jià)值觀】。
問題分析解決過程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
【重點(diǎn)】。
【難點(diǎn)】。
正弦定理的證明,正弦定理在解三角形應(yīng)用思路。
(一)導(dǎo)入新課。
提出問題:在初中已經(jīng)學(xué)習(xí)過解直角三角形,已會(huì)根據(jù)直角三角形中已知的邊與角,求出未知的邊與角,直角三角形存在如下邊角關(guān)系,在一個(gè)三角形中各邊和他所對(duì)角的正弦之比相等(畫圖展示直角三角形圖形,引導(dǎo)得出正弦定理公式形式),帶領(lǐng)學(xué)生猜測(cè)對(duì)任意三角形都成立?這就是這一節(jié)課主要研究的.課題。
(二)生成新知。
提問:驗(yàn)證任意三角形成立?還需要驗(yàn)證哪些三角形結(jié)論成立?
預(yù)設(shè)學(xué)生回答銳角三角形,鈍角三角形。
思考:嘗試用其他方法證明正弦定理。
提問:觀察正弦定理的結(jié)構(gòu),這個(gè)式子包含了哪些等式,每個(gè)等式有幾個(gè)量?
學(xué)生小組討論總結(jié),三個(gè)等式,每個(gè)式子有四個(gè)量,如果知道其中三個(gè)可以求出第四個(gè)。
(三)鞏固提高。
課本例一,例二,思考利用正弦定理,可以解決斜三角形哪些類型的問題。
小組討論,師生共同總結(jié)正弦定理解決的兩類斜三角形問題。
(四)小結(jié)作業(yè)。
小結(jié):提問學(xué)生本節(jié)課有什么收獲,闡述正弦定理公式,及解決的問題。
作業(yè):思考嘗試用其他方法證明正弦定理。
(略)。
正弦定理說課稿篇十二
尊敬的各位考官:
大家好,我是xx號(hào)考生,今天我說課的題目是《勾股定理的逆定理》。新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。
首先來談一談我對(duì)教材的理解。
本節(jié)課選自人教版初中數(shù)學(xué)八年級(jí)下冊(cè)第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時(shí)本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識(shí)。
接下來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識(shí),處于由幾何內(nèi)容的初級(jí)向高級(jí)行進(jìn)的過程。他們的幾何思維正在逐步形成和發(fā)展,對(duì)幾何題目具有一定的分析、想象、概括能力,具有對(duì)未知事物的新鮮感和探求欲。同時(shí)也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵(lì)與引導(dǎo)并重。
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下教學(xué)目標(biāo):
(一)知識(shí)與技能。
理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
(二)過程與方法。
經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
(三)情感、態(tài)度與價(jià)值觀。
體會(huì)事物之間的聯(lián)系,感受幾何的魅力。
在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。
為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。
下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過程的設(shè)計(jì)。
(一)導(dǎo)入新課。
課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時(shí)我會(huì)要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。
通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時(shí)用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。
(二)講解新知。
接下來是最重要的新授環(huán)節(jié)。
請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確。
出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。
在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題2。
正弦定理說課稿篇十三
聽了何老師的勾股定理,感觸比較多。整節(jié)課,可以說是化繁為簡(jiǎn)、重點(diǎn)突出、條理清晰、層次分明。
讓我印象最深刻,也是值得我學(xué)習(xí)的地方,應(yīng)該是利用正方形的面積來推導(dǎo)勾股定理這一部分,這也是本節(jié)課的難點(diǎn)與重點(diǎn)。從找正方形面積之間的關(guān)系,來推導(dǎo)出中間所圍的三角形三邊之間的關(guān)系,無疑是一個(gè)很巧妙的思維,在網(wǎng)格中找正方形面積的時(shí)候,學(xué)生可以充分利用所學(xué)過的割補(bǔ)法的知識(shí),用不同的方法,得到面積,思維上得到了發(fā)散。接下來利用了一個(gè)有效的設(shè)問“對(duì)于等腰直角三角形三邊所滿足的這一關(guān)系,是否一般的直角三角形也滿足呢?聚攏了發(fā)散的思維,并明確了勾股定理。整個(gè)過程條理清晰、層次分明,學(xué)生在一步一步的探索中學(xué)到了新的`知識(shí)。符合學(xué)生的認(rèn)知水平。
練習(xí)分為兩部分,第一部分是:蝸牛的行走路徑、小鳥飛行路程、輪船航行。這一部分在課程開始時(shí),以動(dòng)畫的形式吸引學(xué)生的注意,并設(shè)置了求解的疑問,在勾股定理明確之后,讓學(xué)生做、學(xué)生講解、老師點(diǎn)撥。從中加深學(xué)生對(duì)勾股定理的印象:一是一定要在直角三角形中使用,如果沒有直角三角形,則首先要構(gòu)造出直角三角形。二是,得到了三組勾股數(shù),為勾股數(shù)的規(guī)律做鋪墊。第二部分的練習(xí)是給學(xué)生們課下練習(xí)的。
整個(gè)課堂中,教師的教學(xué)功底通過對(duì)課堂節(jié)奏的掌控、教師用語的提煉、ppt技巧的掌握得到了充分的展現(xiàn)。很值得我學(xué)習(xí)!
正弦定理說課稿篇十四
正弦定理是初中數(shù)學(xué)中比較重要和難理解的部分,很多同學(xué)甚至老師都對(duì)其感到頭疼。但是,正弦定理不僅是數(shù)學(xué)中的重要概念,還有著豐富的實(shí)際應(yīng)用。在學(xué)習(xí)正弦定理后,我從中學(xué)到了很多有益的知識(shí)和經(jīng)驗(yàn),下面我將分享我的心得體會(huì)。
正弦定理是指一個(gè)三角形中,邊長(zhǎng)和對(duì)應(yīng)的角度的關(guān)系公式。其中一個(gè)角度的正弦等于與其對(duì)邊的長(zhǎng)度之一的比例,即sinA=a/b。正弦定理可以通過cosB,cosC的余弦公式而推出,可以方便計(jì)算三角形的邊長(zhǎng)和角度。對(duì)于初學(xué)者來說,重要的是能夠理解公式的本質(zhì),同時(shí)也體會(huì)到了科學(xué)的推理方法。
第三段:在計(jì)算中的應(yīng)用。
正弦定理在生活和學(xué)習(xí)中都有很大的應(yīng)用價(jià)值。例如,在航海和導(dǎo)航中,我們經(jīng)常需要利用正弦定理計(jì)算船或車等運(yùn)動(dòng)物體的位置和角度。在建筑方面,正弦定理甚至可以計(jì)算出大樓、橋梁和塔等構(gòu)造物的高度和角度。除此之外,正弦定理在數(shù)學(xué)應(yīng)用中也是非常重要的,能夠解決許多難題,如解三角函數(shù)方程、求角度等。
第四段:學(xué)習(xí)體會(huì)。
在學(xué)習(xí)正弦定理的過程中,我發(fā)現(xiàn)一個(gè)重要的問題就是需要對(duì)三角函數(shù)有清晰的認(rèn)識(shí)。也就是說,在學(xué)習(xí)正弦定理之前,我們需要認(rèn)真學(xué)習(xí)三角函數(shù)的其他部分,例如正切和余弦等。同時(shí),不斷練習(xí),多做習(xí)題對(duì)于記住和掌握公式也是非常有益的。此外,我也學(xué)會(huì)了在認(rèn)真理解和熟練應(yīng)用的同時(shí),將其運(yùn)用到實(shí)際問題的解決中,這不僅可以提高學(xué)習(xí)興趣,還能拓展解決問題的思路。
第五段:結(jié)論。
總體來說,正弦定理不僅是數(shù)學(xué)中的重要概念,也有廣泛而且實(shí)際應(yīng)用價(jià)值。學(xué)習(xí)正弦定理可以提高數(shù)學(xué)應(yīng)用能力和推理思維能力,同時(shí)也能減少發(fā)生計(jì)算錯(cuò)誤的可能。在學(xué)習(xí)的過程中,我們需要認(rèn)真學(xué)習(xí)和理解每一個(gè)公式,多經(jīng)過練習(xí)和應(yīng)用,最后將其應(yīng)用到實(shí)際問題中。相信一定可以有所收獲,提高自身的學(xué)習(xí)和應(yīng)用能力。
正弦定理說課稿篇十五
師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶.。
師:那么,一個(gè)三角形滿足什么條件,才能是直角三角形呢?
生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形.。
生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形.。
二、講授新課。
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?
活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)?
正弦定理說課稿篇十六
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。
對(duì)高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的?!边@個(gè)觀點(diǎn)從教學(xué)的角度來理解就是:知識(shí)不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性.
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類基本問題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無解三種情況。
3、通過對(duì)實(shí)際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來源于生活,又服務(wù)與生活。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
突破難點(diǎn)的手段:抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
結(jié)論:
證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
正弦定理說課稿篇十七
“探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容?!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。
綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:
知道勾股定理的由來,初步理解割補(bǔ)拼接的面積證法。
掌握勾股定理,通過動(dòng)手操作利用等積法理解勾股定理的證明過程。
在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。
通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程。
介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國(guó)情感。
本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。
本 節(jié)主要攻克的問題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來說, 有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。
[教學(xué)方法與手段] 針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。
[學(xué)法分析] 在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。
本節(jié)課開始利用多媒體介紹了在北京召開的20xx年 國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué) 生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。
讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié) 論。最后對(duì)此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過割補(bǔ)變?yōu)橐?guī)則。
因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。
這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。
5、自己動(dòng)手,拼出弦圖
讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的 直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。
6、總結(jié)反思
通 過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方 法來學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn) 室”,學(xué)生通過自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。
1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。
2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。
正弦定理說課稿篇十八
通過正弦定理讓我們更容易的了解數(shù)學(xué),正弦定理的教學(xué)內(nèi)容有哪些呢?以下是本站小編為大家整理的關(guān)于《正弦定理》教案,給大家作為參考,歡迎閱讀!
一、教學(xué)內(nèi)容分析。
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時(shí),它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識(shí)在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識(shí),使學(xué)生掌握新的有用的知識(shí),體會(huì)聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過對(duì)定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。
二、學(xué)情分析。
對(duì)高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識(shí),具有一定觀察分析、解決問題的能力;但另一方面對(duì)新舊知識(shí)間的聯(lián)系、理解、應(yīng)用往往會(huì)出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動(dòng)性,注意前后知識(shí)間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)探究呢?建構(gòu)主義認(rèn)為:“知識(shí)不是被動(dòng)吸收的,而是由認(rèn)知主體主動(dòng)建構(gòu)的。”這個(gè)觀點(diǎn)從教學(xué)的角度來理解就是:知識(shí)不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動(dòng)建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個(gè)原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識(shí)和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性。
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類基本問題,并初步認(rèn)識(shí)用正弦定理解三角形時(shí),會(huì)有一解、兩解、無解三種情況。
3、通過對(duì)實(shí)際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識(shí)既來源于生活,又服務(wù)與生活。
五、教學(xué)重點(diǎn)與難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
一、復(fù)習(xí)引入:
結(jié)論:
證明:(向量法)過a作單位向量j垂直于ac,由ac+cb=ab邊同乘以單位向量。
正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等。
本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個(gè)問題需要精心設(shè)計(jì)。一個(gè)是問題的引入,一個(gè)是定理的證明。通過兩個(gè)實(shí)際問題引入,讓學(xué)生體會(huì)為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問題的方法。具體的思路就是從解決課本的實(shí)際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識(shí),也能讓學(xué)生掌握新的有用的知識(shí),有效提高學(xué)生解決問題的能力。
1.在教學(xué)過程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會(huì)數(shù)學(xué)問題是如何解決的,給學(xué)生解決問題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。
2.在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個(gè)重要手段。利用《幾何畫板》探究比值的值,由動(dòng)到靜,取得了很好的效果,加深了學(xué)生的印象。
3.由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時(shí)間的超時(shí),這說明我自己對(duì)學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過程中時(shí)間的分配不夠適當(dāng),教學(xué)語言不夠精簡(jiǎn),今后我一定避免此類問題,爭(zhēng)取更大的進(jìn)步。
【本文地址:http://aiweibaby.com/zuowen/15001909.html】