圓錐體積的說課稿(優(yōu)秀17篇)

格式:DOC 上傳日期:2023-12-14 06:17:05
圓錐體積的說課稿(優(yōu)秀17篇)
時(shí)間:2023-12-14 06:17:05     小編:GZ才子

環(huán)??偨Y(jié)可以幫助我們總結(jié)環(huán)境保護(hù)工作的經(jīng)驗(yàn),提出改進(jìn)措施,保護(hù)生態(tài)環(huán)境。寫總結(jié)時(shí),可以使用一些歸納概括的詞匯和句式,以增加文章的表現(xiàn)力。"接下來是一些優(yōu)秀總結(jié)的范文,希望能夠?yàn)槟愕膶懽魈峁┮恍﹩⑹尽?

圓錐體積的說課稿篇一

一般的實(shí)驗(yàn)教學(xué)只注重實(shí)驗(yàn)的結(jié)果,而容易忽視在實(shí)驗(yàn)過程中對(duì)學(xué)生能力的培養(yǎng)。如能在實(shí)驗(yàn)過程中注意對(duì)學(xué)生能力的培養(yǎng),不但能提高學(xué)生對(duì)知識(shí)的理解程度,而且能全面提高學(xué)生的綜合素質(zhì)。本文試以人教版小數(shù)第十二冊(cè)《圓錐體積公式推導(dǎo)》為例,淺談在實(shí)驗(yàn)中如何培養(yǎng)學(xué)生的各種能力。

一、布置實(shí)驗(yàn)內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)興趣。

記得一位著名的教育家曾說過‘興趣是最好的老師’。在實(shí)驗(yàn)教學(xué)過程中如能激發(fā)學(xué)生的學(xué)習(xí)興趣,教學(xué)效果會(huì)起到事半功倍的作用。圓錐的體積這一節(jié)內(nèi)容是通過實(shí)驗(yàn)來推導(dǎo)體積公式的。如何激發(fā)學(xué)生的學(xué)習(xí)興趣是我們首要考慮的問題。所以一上課我便說明今天上一節(jié)實(shí)驗(yàn)課,要求全體同學(xué)都來參與實(shí)驗(yàn)操作,看誰(shuí)做得最好。學(xué)生聽后歡呼雀躍,學(xué)習(xí)熱情異常高漲。

二、精心準(zhǔn)備,巧設(shè)疑問。

在實(shí)驗(yàn)器材的準(zhǔn)備和實(shí)驗(yàn)操作上,一定要做到精心設(shè)計(jì),還要考慮周全。不但要使學(xué)生較容易運(yùn)用器材做實(shí)驗(yàn),而且要為推導(dǎo)公式打基礎(chǔ)。在這一環(huán)節(jié)中,我首先把全班同學(xué)分成6個(gè)小組,然后讓各小組分別推出一位小組長(zhǎng)。由小組長(zhǎng)領(lǐng)回實(shí)驗(yàn)器材。(每個(gè)組的圓柱和圓錐各有不同:1、4組的等底等高,但底面直徑和高又有區(qū)別;3、6組的不等底也不等高;2組的等底不等高;5組的等高不等底。)讓學(xué)生認(rèn)真觀察本小組的圓柱和圓錐特征,找出它們的異同;并把圓柱和圓錐的異同記錄在實(shí)驗(yàn)記錄本上。并想一想怎樣通過圓柱求出圓錐的體積;大家都勇躍發(fā)言,情緒非常高漲。有的同學(xué)說用器具裝上水,有的說裝上沙大米等;有的說用圓錐裝滿倒進(jìn)圓柱,有的說圓柱裝滿倒進(jìn)圓錐。

三、分組實(shí)驗(yàn),全面提高學(xué)生的各種能力。

分組實(shí)驗(yàn)?zāi)苁垢嗟膶W(xué)生參與實(shí)驗(yàn)和討論,更容易調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,更有利于培養(yǎng)學(xué)生的團(tuán)隊(duì)精神和競(jìng)爭(zhēng)意識(shí);使學(xué)生在實(shí)驗(yàn)中學(xué)會(huì)合作;以及通過實(shí)驗(yàn)加強(qiáng)對(duì)學(xué)生的動(dòng)手能力、協(xié)作能力、分析歸納概括能力等的培養(yǎng)。在分組實(shí)驗(yàn)中,我的.具體做法:1、布置實(shí)驗(yàn)時(shí)說明這次實(shí)驗(yàn)看哪一組做得最好,在實(shí)驗(yàn)結(jié)束時(shí)給予表?yè)P(yáng)。2、在做實(shí)驗(yàn)時(shí)要求每一位學(xué)生都要?jiǎng)邮?,都要做不同的分工,同時(shí)也要配合好其他同學(xué)完成整個(gè)實(shí)驗(yàn)。這樣通過各種附帶的要求全面訓(xùn)練了學(xué)生的能力。

四、學(xué)生自由討論,激發(fā)潛能增強(qiáng)自信心。

等底等高。

最后大家齊讀三遍:圓錐體的體積是和它等底等高的圓柱體體積的三分之一。

通過實(shí)驗(yàn)教學(xué),讓我又看到天真活潑的。

[1][2]。

圓錐體積的說課稿篇二

圓錐的體積是在學(xué)習(xí)了圓錐的認(rèn)識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。

這節(jié)課我是這樣設(shè)計(jì)的:第一部分,復(fù)習(xí)圓錐的特征和圓柱的體積=底面積×高。反思:復(fù)習(xí)舊知識(shí)之間的聯(lián)系,便于運(yùn)用已學(xué)知識(shí)推動(dòng)新知識(shí)的學(xué)習(xí),為學(xué)習(xí)新知識(shí)做準(zhǔn)備。

第二部分,便于圓柱體積的計(jì)算公式,先讓學(xué)生用轉(zhuǎn)化的思想大膽猜測(cè),能否把體積計(jì)算方法轉(zhuǎn)化成已學(xué)過的立體圖形來推導(dǎo)圓錐體積公式呢?學(xué)生猜測(cè)之后,讓學(xué)生拿出手中等底等高的圓柱體,然后同桌討論得出結(jié)論,全班交流。再進(jìn)行第二次實(shí)驗(yàn),同桌交換圓柱或圓錐倒進(jìn)沙子之后,同桌討論,全班交流,老師引導(dǎo)學(xué)生兩次實(shí)驗(yàn)的結(jié)論有什么不同,經(jīng)過學(xué)生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強(qiáng)調(diào)v=3sh的前提條件是等底等高。

反思:這一環(huán)節(jié)讓學(xué)生用轉(zhuǎn)化的思想猜測(cè),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的探究欲望。緊接著讓學(xué)生兩次動(dòng)手實(shí)驗(yàn),親自體驗(yàn)知識(shí)的探究過程。符合小學(xué)生的認(rèn)知規(guī)律,便于學(xué)生主動(dòng)地獲取知識(shí),掌握正確的學(xué)習(xí)方法。通過實(shí)驗(yàn),學(xué)生參與了知識(shí)的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個(gè)結(jié)論不成立。

圓錐體積的說課稿篇三

圓錐母線:圓錐的側(cè)面展開形成的'扇形的半徑、底面圓周上任意一點(diǎn)到頂點(diǎn)的距離。

圓錐的側(cè)面積:將圓錐的側(cè)面沿母線展開,是一個(gè)扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),而扇形的半徑等于圓錐的母線的長(zhǎng).圓錐的側(cè)面積就是弧長(zhǎng)為圓錐底面的周長(zhǎng)×母線/2;沒展開時(shí)是一個(gè)曲面。

圓錐有一個(gè)底面、一個(gè)側(cè)面、一個(gè)頂點(diǎn)、一條高、無(wú)數(shù)條母線,且底面展開圖為一圓形,側(cè)面展開圖是扇形。

圓錐體積的說課稿篇四

作為一位優(yōu)秀的人民教師,總不可避免地需要編寫說課稿,認(rèn)真擬定說課稿,那么說課稿應(yīng)該怎么寫才合適呢?以下是小編收集整理的六年級(jí)數(shù)學(xué)《圓錐體積計(jì)算》說課稿,僅供參考,大家一起來看看吧。

本節(jié)課是北師大版數(shù)學(xué)教材六年級(jí)下冊(cè)第一單元第11~12頁(yè)的內(nèi)容——圓錐的體積。

這部分內(nèi)容是發(fā)展學(xué)生空間觀念的內(nèi)容,也是小學(xué)階段幾何初步知識(shí)的最后一個(gè)內(nèi)容,是學(xué)生在了解和理解了體積和容積的含義基礎(chǔ)上,進(jìn)一步了解圓錐體積或容積;在研究了圓柱體積計(jì)算方法的基礎(chǔ)上,教材繼續(xù)滲透類比的思想,再次引導(dǎo)學(xué)生經(jīng)歷“類比猜想——驗(yàn)證說明”的過程,進(jìn)行圓錐體積計(jì)算方法的探索。內(nèi)容包括了解圓錐體積或容積,理解圓錐體積的計(jì)算公式和圓錐體積計(jì)算公式的具體運(yùn)用。

學(xué)生已經(jīng)直觀認(rèn)識(shí)了長(zhǎng)方體、正方體,掌握了長(zhǎng)方體、正方體體積的計(jì)算方法,在前面的課時(shí)中也已經(jīng)經(jīng)歷了“類比猜想——驗(yàn)證說明”的探索過程,通過已有的長(zhǎng)方體、正方體體積計(jì)算方法,學(xué)習(xí)了圓柱的體積計(jì)算方法,在此基礎(chǔ)上,讓學(xué)生再次經(jīng)歷類比探索去學(xué)習(xí)圓錐體積計(jì)算方法。但長(zhǎng)方體、正方體和圓柱都是直柱體,類比和猜想圓柱體積計(jì)算方法對(duì)學(xué)生來說比較容易,但是圓錐不是直柱體,因此在探索活動(dòng)中,需要引導(dǎo)學(xué)生提出合理的猜想。學(xué)生對(duì)這部分內(nèi)容的掌握,不僅有利于掌握立體圖形之間的本質(zhì)聯(lián)系,提高幾何體知識(shí)掌握水平,同時(shí)也利于提高運(yùn)用所學(xué)數(shù)學(xué)知識(shí)和方法解決一些簡(jiǎn)單實(shí)際問題的能力。

根據(jù)新課標(biāo)的具體要求,和本節(jié)課的教學(xué)內(nèi)容,結(jié)合學(xué)生實(shí)際制定了以下教學(xué)目標(biāo)。

知識(shí)目標(biāo):

1、結(jié)合具體情境和實(shí)踐活動(dòng),了解圓錐的體積或容積的'含義,進(jìn)一步體會(huì)物體體積和容積的含義。

2、經(jīng)歷圓錐體積計(jì)算公式的推導(dǎo)過程,理解并掌握?qǐng)A錐體積的計(jì)算公式,能正確計(jì)算圓錐體積。

3、能運(yùn)用圓錐體積的計(jì)算方法,解決有關(guān)實(shí)際問題。

能力目標(biāo):

培養(yǎng)學(xué)生的觀察、操作能力,進(jìn)一步豐富對(duì)空間的認(rèn)識(shí),建立空間觀念,發(fā)展學(xué)生的形象思維,增強(qiáng)學(xué)生的應(yīng)用意識(shí)。

情感目標(biāo):

能積極參加實(shí)驗(yàn)活動(dòng),培養(yǎng)學(xué)生探索的精神和小組合作的意識(shí)。

難點(diǎn):理解圓錐體積與圓柱體積的關(guān)系。

關(guān)鍵:經(jīng)歷“小實(shí)驗(yàn)”活動(dòng),在活動(dòng)中發(fā)現(xiàn)規(guī)律。

本節(jié)課,在教法和學(xué)法上力求體現(xiàn)以下兩方面:

1、以講解法、教具操作法、實(shí)驗(yàn)法為主,實(shí)現(xiàn)教學(xué)目標(biāo),在教學(xué)中,即充分發(fā)揮學(xué)生的主體作用,調(diào)動(dòng)學(xué)生積極主動(dòng)地參與教學(xué)全過程。

2、教學(xué)充分發(fā)揮學(xué)生的主體作用。通過自己操作實(shí)驗(yàn)、觀察比較、討論小結(jié),發(fā)現(xiàn)圓柱與圓錐的體積關(guān)系,從而推導(dǎo)出圓錐的體積計(jì)算公式。

等底等高的圓柱體和圓錐體容器,不等底等高的圓柱和圓錐。

環(huán)節(jié)一復(fù)習(xí)鋪墊。

回憶并應(yīng)用圓柱體積計(jì)算公式。通過練習(xí)鞏固對(duì)圓柱體積計(jì)算公式的認(rèn)識(shí),為下面學(xué)習(xí)圓錐體積計(jì)算公式作好鋪墊。

環(huán)節(jié)二探索新知。

首先出示教材中的情境圖,并提出問題:求這堆小麥的體積,實(shí)際上就是求什么?引導(dǎo)學(xué)生結(jié)合情境來進(jìn)一步體會(huì)圓錐體積的含義。接著直接揭示課題——研究圓錐體積計(jì)算方法。

探索圓錐體積計(jì)算方法。分為以下幾個(gè)步驟完成。

步驟一:引導(dǎo)學(xué)生回憶圓柱體積計(jì)算方法的推導(dǎo),這樣,學(xué)生可以利用類比遷移規(guī)律,從求圓柱體積的思路、方法中得到啟示。然后讓學(xué)生思考:圓錐的體積也能轉(zhuǎn)化成學(xué)過的體積來計(jì)算嗎?轉(zhuǎn)化成哪種形體最合適?學(xué)生很容易根據(jù)圓柱和圓錐的底面都是園,來聯(lián)想到轉(zhuǎn)化成圓柱。

步驟二:放手讓學(xué)生大膽的猜想如何計(jì)算圓錐的體積。學(xué)生很容易想到如果是用底面積乘高,計(jì)算出來的是圓柱的體積,而直覺會(huì)讓他們想到圓錐的體積應(yīng)該比圓柱體積小,但這個(gè)時(shí)候他們并沒有意識(shí)到“等底等高”。讓學(xué)生繼續(xù)猜想應(yīng)該是圓柱的幾分之幾,并說明猜想的依據(jù)。在猜想過程中,學(xué)生可能得出的結(jié)論多樣,這個(gè)時(shí)候針對(duì)不同的結(jié)論,如:圓錐體積是圓柱體積的二分之一;圓錐體積是圓柱體積的三分之一等。教師隨即出示幾個(gè)大小不同,且不等底等高的圓柱和圓錐讓學(xué)生仔細(xì)觀察,比如:大圓錐和小圓柱,或者底面積(高)相同,但是高(底面積)不相同的圓柱和圓錐。通過觀察讓學(xué)生發(fā)現(xiàn)高和底面積如果不相同,不能找到與圓錐的關(guān)系,因此只有圓柱和圓錐等底等高才便于我們研究。

步驟三:實(shí)驗(yàn)活動(dòng)。在學(xué)生形成猜想后,再引導(dǎo)學(xué)生“驗(yàn)證說明”自己的猜想。展開分組活動(dòng),讓學(xué)生參與操作實(shí)驗(yàn),用一個(gè)空心的圓錐裝滿水或沙子倒入等底等高的圓柱容器中,看幾次能倒?jié)M;然后再把圓柱中裝滿水或沙子倒入等底等高的圓錐容器中,需要倒幾次才能倒完,并做好觀察記錄。讓學(xué)生初步感知等底等高的圓柱和圓錐體積之間的關(guān)系。接著教師用一對(duì)等底等高的圓柱和圓錐。

圓錐體積的說課稿篇五

1、本節(jié)教材是義務(wù)教育小學(xué)數(shù)學(xué)(人教版)六年制第十二冊(cè)第三單元《圓柱、圓錐和球》中《圓錐體積》的第一課時(shí)。教學(xué)內(nèi)容為圓錐體積計(jì)算公式的推導(dǎo),例1、例2,相應(yīng)的“做一做”及練習(xí)十二的第3、4、5題。

2、本節(jié)教材是在學(xué)生已經(jīng)掌握了圓柱體積計(jì)算及其應(yīng)用和認(rèn)識(shí)了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段學(xué)習(xí)幾何知識(shí)的最后一課時(shí)內(nèi)容。讓學(xué)生學(xué)好這一部分內(nèi)容,有利于進(jìn)一步發(fā)展學(xué)生的空間觀念,為進(jìn)一步解決一些實(shí)際問題打下基礎(chǔ)。教材按照實(shí)驗(yàn)、觀察、推導(dǎo)、歸納、實(shí)際應(yīng)用的程序進(jìn)行安排。

3、教學(xué)重點(diǎn):能正確運(yùn)用圓錐體積計(jì)算公式求圓錐的體積。

4、教學(xué)目標(biāo):

(3)德育方面:通過實(shí)驗(yàn),引導(dǎo)學(xué)生探索知識(shí)的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,培養(yǎng)交流與合作的團(tuán)隊(duì)精神。

5、教具準(zhǔn)備:等底等高的圓柱、圓錐一對(duì),與圓柱等底不等高的圓錐一個(gè),與圓柱等高不等底的圓錐一個(gè)。

學(xué)具準(zhǔn)備:讓學(xué)生分組制作等底等高的圓柱、圓錐若干對(duì),一定量的細(xì)沙。

著名教育家布魯納說過:“教學(xué)不是把學(xué)生當(dāng)成圖書館,而要培養(yǎng)學(xué)生參與學(xué)習(xí)的過程?!睂W(xué)生是學(xué)習(xí)的主體,只有通過自身的實(shí)踐、比較、思索,才能更加深刻地領(lǐng)略到知識(shí)的真諦。因此,我在設(shè)計(jì)教法時(shí),根據(jù)本節(jié)幾何課的特點(diǎn),結(jié)合小學(xué)生的認(rèn)知規(guī)律,采用以下幾種教法:

1、實(shí)驗(yàn)操作法。

波利亞說過:“學(xué)習(xí)任何知識(shí)的最佳途徑是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系?!币虼?,我在學(xué)生已經(jīng)認(rèn)識(shí)圓錐的基礎(chǔ)上,設(shè)計(jì)了一個(gè)實(shí)驗(yàn),通過學(xué)生動(dòng)手操作,用空?qǐng)A錐盛滿沙后倒入等底等高空?qǐng)A柱中,發(fā)現(xiàn)“圓錐的體積等于和它等底等高的圓柱體積的三分之一”。利用實(shí)驗(yàn)法,為推導(dǎo)出圓錐的體積公式發(fā)揮橋梁和啟智的作用,有助于發(fā)展學(xué)生的空間觀念,培養(yǎng)觀察能力、思維能力和動(dòng)手操作能力,為進(jìn)一步學(xué)習(xí),提供了豐富的感性材料,從而逐步從具體的操作過渡到內(nèi)部語(yǔ)言。

2、比較法、討論法、發(fā)現(xiàn)法三法優(yōu)化組合。

幾何知識(shí)具有邏輯性、嚴(yán)密性、系統(tǒng)性的特點(diǎn)。因此在做實(shí)驗(yàn)時(shí),我要求學(xué)生運(yùn)用比較法、討論法、發(fā)現(xiàn)法得出結(jié)論:“圓錐的體積等于與它等底等高圓柱體積的三分之一”。然后再讓學(xué)生討論假如這句話中去掉“等底等高”這幾個(gè)字還能否成立,并讓學(xué)生用不等底等高的空?qǐng)A錐、空?qǐng)A柱盛沙做實(shí)驗(yàn),發(fā)現(xiàn)有時(shí)裝不下,有時(shí)不夠裝,有時(shí)剛好裝滿,得出結(jié)論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了“等底等高”這個(gè)重要的前提條件。

“人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必要的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展”這是新世紀(jì)數(shù)學(xué)課程的基本理念。新課程標(biāo)準(zhǔn)還強(qiáng)調(diào)引導(dǎo)學(xué)生主動(dòng)參與、親自實(shí)踐、獨(dú)立思考、合作探究,改變單一的記憶、接受、模仿的被動(dòng)學(xué)習(xí)方式。因此我在講求教法的同時(shí),更重視對(duì)學(xué)生學(xué)法的指導(dǎo)。

1、實(shí)驗(yàn)轉(zhuǎn)化法。

有些知識(shí)單憑解說是無(wú)法讓學(xué)生真正理解的,只有通過實(shí)驗(yàn),反復(fù)操作,才能深刻領(lǐng)悟其中的內(nèi)在奧秘。在指導(dǎo)學(xué)生進(jìn)行實(shí)驗(yàn)操作時(shí),我著重從三個(gè)方面進(jìn)行引導(dǎo):首先,讓學(xué)生做好操作的準(zhǔn)備,也就是各自準(zhǔn)備好等底等高的圓柱、圓錐一對(duì),一定量的沙;其次,告訴他們操作的方法步驟和注意點(diǎn);第三,引導(dǎo)學(xué)生在操作中比較、發(fā)現(xiàn)、總結(jié)。這樣通過實(shí)驗(yàn)操作推導(dǎo)得出圓錐的體積公式,培養(yǎng)了學(xué)生觀察比較、交流合作、概括歸納等能力。

2、嘗試練習(xí)法。

蘇霍姆林斯基認(rèn)為:“成功的歡樂是一種巨大的情緒力量,它可以促進(jìn)兒童好好學(xué)習(xí)的愿望?!北竟?jié)課在教學(xué)兩道例題時(shí),讓學(xué)生嘗試自己獨(dú)立解答,挖掘?qū)W生的潛能,讓他們體驗(yàn)學(xué)習(xí)成功的樂趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,發(fā)揮學(xué)生的主體作用,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

本節(jié)課我設(shè)計(jì)了以下五個(gè)教學(xué)程序:

1、復(fù)習(xí)舊知,做好鋪墊。

(1)看圖說出圓錐的底面和高。

(2)一個(gè)圓柱體零件,底面積是6.28平方厘米,高是3厘米,它的體積是多少?

這兩道題是復(fù)習(xí)圓錐的認(rèn)識(shí)和圓柱的體積公式及其應(yīng)用,為新知遷移做好鋪墊。

2、談話激趣,導(dǎo)入新課。

圓錐體積的說課稿篇六

1、本節(jié)教材是義務(wù)教育小學(xué)數(shù)學(xué)(人教版)六年制第十二冊(cè)第三單元《圓柱、圓錐和球》中《圓錐體積》的第一課時(shí)。教學(xué)內(nèi)容為圓錐體積計(jì)算公式的推導(dǎo),例1、例2,相應(yīng)的“做一做”及練習(xí)十二的第3、4、5題。

2、本節(jié)教材是在學(xué)生已經(jīng)掌握了圓柱體積計(jì)算及其應(yīng)用和認(rèn)識(shí)了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段學(xué)習(xí)幾何知識(shí)的最后一課時(shí)內(nèi)容。讓學(xué)生學(xué)好這一部分內(nèi)容,有利于進(jìn)一步發(fā)展學(xué)生的空間觀念,為進(jìn)一步解決一些實(shí)際問題打下基礎(chǔ)。教材按照實(shí)驗(yàn)、觀察、推導(dǎo)、歸納、實(shí)際應(yīng)用的程序進(jìn)行安排。

3、教學(xué)重點(diǎn):能正確運(yùn)用圓錐體積計(jì)算公式求圓錐的體積。

4、教學(xué)目標(biāo):

(3)德育方面:通過實(shí)驗(yàn),引導(dǎo)學(xué)生探索知識(shí)的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,培養(yǎng)交流與合作的團(tuán)隊(duì)精神。

5、教具準(zhǔn)備:等底等高的圓柱、圓錐一對(duì),與圓柱等底不等高的圓錐一個(gè),與圓柱等高不等底的圓錐一個(gè)。

學(xué)具準(zhǔn)備:讓學(xué)生分組制作等底等高的圓柱、圓錐若干對(duì),一定量的細(xì)沙。

著名教育家布魯納說過:“教學(xué)不是把學(xué)生當(dāng)成圖書館,而要培養(yǎng)學(xué)生參與學(xué)習(xí)的過程?!睂W(xué)生是學(xué)習(xí)的主體,只有通過自身的實(shí)踐、比較、思索,才能更加深刻地領(lǐng)略到知識(shí)的真諦。因此,我在設(shè)計(jì)教法時(shí),根據(jù)本節(jié)幾何課的特點(diǎn),結(jié)合小學(xué)生的認(rèn)知規(guī)律,采用以下幾種教法:

1、實(shí)驗(yàn)操作法。

波利亞說過:“學(xué)習(xí)任何知識(shí)的最佳途徑是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系?!币虼?,我在學(xué)生已經(jīng)認(rèn)識(shí)圓錐的基礎(chǔ)上,設(shè)計(jì)了一個(gè)實(shí)驗(yàn),通過學(xué)生動(dòng)手操作,用空?qǐng)A錐盛滿沙后倒入等底等高空?qǐng)A柱中,發(fā)現(xiàn)“圓錐的體積等于和它等底等高的圓柱體積的三分之一”。利用實(shí)驗(yàn)法,為推導(dǎo)出圓錐的體積公式發(fā)揮橋梁和啟智的作用,有助于發(fā)展學(xué)生的空間觀念,培養(yǎng)觀察能力、思維能力和動(dòng)手操作能力,為進(jìn)一步學(xué)習(xí),提供了豐富的感性材料,從而逐步從具體的操作過渡到內(nèi)部語(yǔ)言。

2、比較法、討論法、發(fā)現(xiàn)法三法優(yōu)化組合。

幾何知識(shí)具有邏輯性、嚴(yán)密性、系統(tǒng)性的特點(diǎn)。因此在做實(shí)驗(yàn)時(shí),我要求學(xué)生運(yùn)用比較法、討論法、發(fā)現(xiàn)法得出結(jié)論:“圓錐的體積等于與它等底等高圓柱體積的三分之一”。然后再讓學(xué)生討論假如這句話中去掉“等底等高”這幾個(gè)字還能否成立,并讓學(xué)生用不等底等高的空?qǐng)A錐、空?qǐng)A柱盛沙做實(shí)驗(yàn),發(fā)現(xiàn)有時(shí)裝不下,有時(shí)不夠裝,有時(shí)剛好裝滿,得出結(jié)論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了“等底等高”這個(gè)重要的前提條件。

“人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必要的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展”這是新世紀(jì)數(shù)學(xué)課程的基本理念。新課程標(biāo)準(zhǔn)還強(qiáng)調(diào)引導(dǎo)學(xué)生主動(dòng)參與、親自實(shí)踐、獨(dú)立思考、合作探究,改變單一的記憶、接受、模仿的被動(dòng)學(xué)習(xí)方式。因此我在講求教法的同時(shí),更重視對(duì)學(xué)生學(xué)法的指導(dǎo)。

1、實(shí)驗(yàn)轉(zhuǎn)化法。

有些知識(shí)單憑解說是無(wú)法讓學(xué)生真正理解的,只有通過實(shí)驗(yàn),反復(fù)操作,才能深刻領(lǐng)悟其中的內(nèi)在奧秘。在指導(dǎo)學(xué)生進(jìn)行實(shí)驗(yàn)操作時(shí),我著重從三個(gè)方面進(jìn)行引導(dǎo):首先,讓學(xué)生做好操作的準(zhǔn)備,也就是各自準(zhǔn)備好等底等高的圓柱、圓錐一對(duì),一定量的沙;其次,告訴他們操作的方法步驟和注意點(diǎn);第三,引導(dǎo)學(xué)生在操作中比較、發(fā)現(xiàn)、總結(jié)。這樣通過實(shí)驗(yàn)操作推導(dǎo)得出圓錐的體積公式,培養(yǎng)了學(xué)生觀察比較、交流合作、概括歸納等能力。

2、嘗試練習(xí)法。

蘇霍姆林斯基認(rèn)為:“成功的歡樂是一種巨大的情緒力量,它可以促進(jìn)兒童好好學(xué)習(xí)的愿望?!北竟?jié)課在教學(xué)兩道例題時(shí),讓學(xué)生嘗試自己獨(dú)立解答,挖掘?qū)W生的潛能,讓他們體驗(yàn)學(xué)習(xí)成功的樂趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,發(fā)揮學(xué)生的主體作用,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

本節(jié)課我設(shè)計(jì)了以下五個(gè)教學(xué)程序:

1、復(fù)習(xí)舊知,做好鋪墊。

(1)看圖說出圓錐的底面和高。

(2)一個(gè)圓柱體零件,底面積是6.28平方厘米,高是3厘米,它的體積是多少?

這兩道題是復(fù)習(xí)圓錐的認(rèn)識(shí)和圓柱的體積公式及其應(yīng)用,為新知遷移做好鋪墊。

2、談話激趣,導(dǎo)入新課。

圓錐體積的說課稿篇七

圓錐是小學(xué)幾何初步知識(shí)的最后一個(gè)教學(xué)內(nèi)容,是學(xué)生在學(xué)習(xí)了平面圖形和長(zhǎng)方體、正方體、圓柱體的基礎(chǔ)上進(jìn)行研究的含有曲面圍成的最基本的立體圖形。由研究長(zhǎng)方體、正方體和圓柱體的體積擴(kuò)展到研究圓錐的體積的。內(nèi)容包括理解圓錐體積的計(jì)算公式和圓錐體積計(jì)算公式的具體運(yùn)用。學(xué)生掌握這些內(nèi)容,不僅有利于全面掌握長(zhǎng)方體、正方體、圓柱和圓錐之間的本質(zhì)聯(lián)系、提高幾何知識(shí)掌握水平,為學(xué)習(xí)初中幾何打下基礎(chǔ),同時(shí)提高了運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)技能解決實(shí)際問題的能力。

教學(xué)目標(biāo)是:

1、使學(xué)生理解圓錐體積的推導(dǎo)過程,初步掌握?qǐng)A錐體積的計(jì)算公式,并能正確計(jì)算圓錐的體積。

2、通過動(dòng)手推導(dǎo)圓錐體積計(jì)算公式的過程,培養(yǎng)學(xué)生初步的空間觀念和動(dòng)手操作能力。

教學(xué)重點(diǎn)是:掌握?qǐng)A錐體積的計(jì)算方法。

二、說教法。

根據(jù)學(xué)生認(rèn)知活動(dòng)的規(guī)律,學(xué)生實(shí)際水平狀況,以及教學(xué)內(nèi)容的特點(diǎn),我在本節(jié)課以自主探究、小組合作學(xué)習(xí)方式為主,采用情境教學(xué)法,先通過情境感知并進(jìn)行猜想,再通過操作驗(yàn)證,從中提取數(shù)學(xué)問題,自己總結(jié)歸納出圓錐體積的計(jì)算方法,從而使學(xué)生從形象思維逐步過渡到抽象思維,進(jìn)而達(dá)到感知新知、驗(yàn)證新知、應(yīng)用新知、鞏固和深化新知的目的,同時(shí)在課堂上多鼓勵(lì)學(xué)生,尤其注重培養(yǎng)學(xué)生敢于質(zhì)疑的精神。

三、說學(xué)法。

本節(jié)課學(xué)習(xí)適于學(xué)生展開觀察、猜想、操作、比較、交流、討論、歸納等教學(xué)活動(dòng),為了更好的指導(dǎo)學(xué)法,我采用小組合作形式組織教學(xué)。這樣,一方面可以讓學(xué)生去發(fā)現(xiàn),體驗(yàn)創(chuàng)造獲取新知,另一方面,也可以增強(qiáng)學(xué)生的合作意識(shí),在活動(dòng)中迸發(fā)創(chuàng)造性的思維火花。

四、說教學(xué)流程。

為了更好的突出重點(diǎn),突破難點(diǎn),我以動(dòng)手操作、觀察猜想、實(shí)驗(yàn)求證、討論歸納法實(shí)現(xiàn)教學(xué)目標(biāo);教學(xué)中充分利用幾何的直觀,發(fā)揮學(xué)生的主體作用,調(diào)動(dòng)學(xué)生積極主動(dòng)地參與教學(xué)的全過程。

1、創(chuàng)設(shè)情境,提出問題。

出示近似圓錐形的沙堆,接著讓學(xué)生根據(jù)情境提出他們想知道的知識(shí),很多學(xué)生都想知道沙堆的體積有多大,從而導(dǎo)出課題“圓錐的體積”。讓學(xué)生自己提出問題,發(fā)現(xiàn)問題,激發(fā)了學(xué)生探索解決問題的`強(qiáng)烈愿望。

2、探索實(shí)驗(yàn),得出結(jié)論。

a、動(dòng)手操作。

把一個(gè)圓柱形木料的上底削成一點(diǎn),讓學(xué)生觀察削成的圓錐體與原來的圓柱體有什么關(guān)系.要求先標(biāo)出上底的圓心點(diǎn),不改孌下底面,注意安全。培養(yǎng)學(xué)生初步的空間觀念和動(dòng)手操作能力。

b、觀察猜想。

觀察、比較圓柱體與圓錐體。突破知識(shí)點(diǎn)(1)“等底等高”;

讓學(xué)生猜測(cè)圓柱體積與它等底等高的圓錐體積的關(guān)系,突破知識(shí)點(diǎn)(2)圓錐體積比與它等底等高的圓柱體積小、圓錐體積是與它等底等高的圓柱體積的1/2、圓錐體積是與它等底等高的圓柱體積的1/3;設(shè)想求圓錐體積的方法,學(xué)生獨(dú)立思考后交流討論,給學(xué)生提供了聯(lián)想和交流的空間,培養(yǎng)了他們的創(chuàng)新能力。

c、實(shí)驗(yàn)求證。

學(xué)生動(dòng)手實(shí)驗(yàn),小組合作探究圓錐體積的計(jì)算方法,(1)用天平稱圓錐體和與它等底等高的圓柱體木料的質(zhì)量;(2)把圓錐體浸裝有水的圓柱形水槽里量、算出體積;(3)用裝沙或裝水的方法進(jìn)行實(shí)驗(yàn)。這樣的設(shè)計(jì),由教師操作演示變學(xué)生動(dòng)手實(shí)驗(yàn),充分發(fā)揮了學(xué)生的主體作用。

通過學(xué)生演示、交流、討論,得出圓錐體積的計(jì)算公式:

圓柱的體積等于與它等底等高的圓錐體積的3倍;

圓錐體積等于與它等底等高的圓柱的體積的1/3.

圓錐體積=底面積×高×1/3。

這個(gè)環(huán)節(jié)充分發(fā)揮了學(xué)生的主體作用,讓學(xué)生在設(shè)想、探索、實(shí)驗(yàn)中發(fā)展動(dòng)手操作能力及創(chuàng)新能力。

3、應(yīng)用結(jié)論,解決問題。

(1)以練習(xí)的形式出示例1。

通過這道練習(xí),鞏固了所學(xué)知識(shí)。

(2)基礎(chǔ)練習(xí):求下面各圓錐的體積。

底面面積是7.8平方米,高是1.8米。

底面半徑是4厘米,高是21厘米。

底面直徑是6分米,高是6分米。

這道題是培養(yǎng)學(xué)生聯(lián)系舊知靈活計(jì)算的能力,形成系統(tǒng)的知識(shí)結(jié)構(gòu)。

(3)出示例2。

通過這道練習(xí),培養(yǎng)學(xué)生解決實(shí)際問題的能力,了解數(shù)學(xué)與生活的緊密聯(lián)系。

(4)操作練習(xí)。

讓學(xué)生把實(shí)驗(yàn)用的沙子堆成圓錐形沙堆,合作測(cè)量計(jì)算出它的體積,這道題就地取材,給了學(xué)生一個(gè)運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的機(jī)會(huì),讓他們動(dòng)手動(dòng)腦,提高了學(xué)習(xí)數(shù)學(xué)的興趣。

4、全課總結(jié),課外延伸。

讓學(xué)生說說這節(jié)課的收獲,并在課后從生活中找一個(gè)圓錐形物體,想辦法計(jì)算出它的體積。這樣激發(fā)了學(xué)生到生活中繼續(xù)探究數(shù)學(xué)問題的興趣。

圓錐體積的說課稿篇八

(一)圓錐是小學(xué)幾何初步知識(shí)的最后一個(gè)教學(xué)單元中的內(nèi)容,是學(xué)生在學(xué)習(xí)了平面圖形和長(zhǎng)方體、正方體、圓柱體這三種立體圖形的基礎(chǔ)上進(jìn)行研究的含有曲面圍成的最基本的立體圖形。由研究長(zhǎng)方體、正方體和圓柱體的體積擴(kuò)展到研究圓錐的體積,這是發(fā)展學(xué)生空間觀念的內(nèi)容。

內(nèi)容包括理解圓錐體積的計(jì)算公式和圓錐體積計(jì)算公式的具體運(yùn)用。學(xué)生掌握這些內(nèi)容,不僅有利于全面掌握長(zhǎng)方體、正方體、圓柱體和圓錐之間的本質(zhì)聯(lián)系、提高幾何體知識(shí)掌握水平,為學(xué)習(xí)初中幾何打下基礎(chǔ),同時(shí)提高了運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)和方法解決一些簡(jiǎn)單實(shí)際問題的能力。

(二)、教學(xué)目標(biāo)。

1、通過實(shí)驗(yàn),使學(xué)生理解和掌握?qǐng)A錐體積公式,能運(yùn)用公式正確地計(jì)算圓錐的體積。

2、培養(yǎng)學(xué)生的觀察、操作能力和初步的空間觀念,培養(yǎng)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問題的能力。

3、滲透事物間相互聯(lián)系的辯證唯物主義觀點(diǎn)的啟蒙教育。

(三)教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵。

重點(diǎn):理解和掌握?qǐng)A錐體積的計(jì)算公式。

難點(diǎn):理解圓柱和圓錐等底等高時(shí)體積間的倍數(shù)關(guān)系。

關(guān)鍵:組織學(xué)生動(dòng)手做實(shí)驗(yàn),引導(dǎo)學(xué)生動(dòng)腦、動(dòng)手推導(dǎo)出圓錐體積的計(jì)算公式。

以談話法、實(shí)驗(yàn)法為主,討論法、讀書指導(dǎo)法、練習(xí)法為輔,實(shí)現(xiàn)教學(xué)目標(biāo)。教學(xué)中,既充分發(fā)揮學(xué)生的主體作用,調(diào)動(dòng)學(xué)生積極主動(dòng)地參與教學(xué)的全過程。

小學(xué)階段學(xué)習(xí)的幾何知識(shí)是直觀幾何。小學(xué)生學(xué)習(xí)幾何知識(shí)不是嚴(yán)格的論證,而主要是通過觀察、操作。根據(jù)課題的特點(diǎn),主要采取讓學(xué)生做實(shí)驗(yàn)的方法主動(dòng)獲取知識(shí)。主要引導(dǎo)學(xué)生做了三個(gè)實(shí)驗(yàn)。一是比較圓柱和圓錐是等底等高,強(qiáng)調(diào)圓柱和圓錐是等底等高這個(gè)必要條件;二是做在圓錐中倒的實(shí)驗(yàn),使學(xué)生理解等底等高的圓柱和圓錐存在著一定的倍數(shù)關(guān)系;三是做在小圓錐里裝滿沙土往大圓柱中倒的實(shí)驗(yàn),再次強(qiáng)調(diào)只有等底等高的圓柱和圓錐存在著的倍數(shù)關(guān)系,搞清了圓錐體積公式的由來,從而理解和掌握了圓錐體積公式,培養(yǎng)了學(xué)生的觀察、操作能力和初步的空間觀念,克服了幾何形體計(jì)算公式教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解,重知識(shí)、輕能力的弊病。突出了教學(xué)重點(diǎn)。

1、教學(xué)中充分發(fā)揮學(xué)生的主體作用。學(xué)生能做的盡量讓學(xué)生自己做,學(xué)生能想的盡量讓學(xué)生自己想,學(xué)生不能想的,教師啟發(fā)、引導(dǎo)學(xué)生想,學(xué)生能說的盡量讓學(xué)生自己說。學(xué)生的整個(gè)學(xué)習(xí)過程圍繞著教師創(chuàng)設(shè)的問題情境之中。

2、學(xué)生學(xué)習(xí)圓錐體積公式的推導(dǎo)時(shí),通過自己操作實(shí)驗(yàn)、觀察比較、討論小結(jié)、推導(dǎo)出圓錐的計(jì)算公式,從而初步學(xué)會(huì)運(yùn)用實(shí)驗(yàn)的方法探索新知識(shí)。

(一)、導(dǎo)入課題。

1、讓學(xué)生自己找出自己桌子上的圓柱體,指出它的底面和高。

這樣,學(xué)生可以利用遷移規(guī)律,從求圓柱體積的思路、方法中得到啟示,領(lǐng)悟出求圓錐體積的方法。

2、讓學(xué)生自己找出圓錐體,指出它的底面和高,同時(shí)引出課題:圓錐的體積。

(二)講授新知。

1、(1)引入新課。

其次,學(xué)生操作實(shí)驗(yàn),先讓學(xué)生比較圓柱和圓錐是等底等高。再讓學(xué)生做在圓錐中裝滿沙土往等底等高的圓柱中倒和在圓柱中裝滿沙土往等底等高的圓錐中倒的實(shí)驗(yàn),得出倒三次正好倒?jié)M。使學(xué)生理解等底等高的圓柱和圓錐,圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐的3倍。

第三、小組討論,全班交流,歸納,推導(dǎo)出圓錐體積的計(jì)算公式:v=1/3sh。

第四、讓學(xué)生做在小圓錐里裝滿沙土往大圓柱中倒的實(shí)驗(yàn),得出倒三次不能倒?jié)M。再次強(qiáng)調(diào),只有等底等高的圓柱和圓錐才存在著一定的倍數(shù)關(guān)系。

第五、師生小結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。

練習(xí):

填空:(口答)(電腦出示)等底等高的圓柱和圓錐,圓錐的體積是15立方厘米,圓柱的體積是()立方厘米,如果圓柱的體積是a立方厘米,圓錐的體積是()立方厘米。

2、教學(xué)應(yīng)用體積公式計(jì)算體積(電腦出示題目)。

圓錐體積的說課稿篇九

聽了侯老師的《圓錐的體積》一課,收獲很多,下面我想重點(diǎn)談本節(jié)課的兩點(diǎn)成功之處,希望能與大家一起探討。

第一:為新知識(shí)的學(xué)習(xí)搭建合理平臺(tái)。

主要體現(xiàn)在侯老師能夠運(yùn)用原有知識(shí)來推動(dòng)新知識(shí)的學(xué)習(xí),設(shè)計(jì)有獎(jiǎng)問答和實(shí)驗(yàn)等手段,讓學(xué)生大膽借鑒前面學(xué)習(xí)圓柱體積公式的方法來探究圓錐體積公式。利用遷移規(guī)律,讓學(xué)生從求圓柱體積的思路、方法中得到啟示,領(lǐng)悟出求圓錐體積的方法,使新舊知識(shí)得到整合。這種借鑒的學(xué)習(xí)方法,不僅使本節(jié)課的教學(xué)變得輕松,同時(shí)有利于學(xué)生更深刻地理解和掌握這種學(xué)習(xí)策略,有利于學(xué)生的進(jìn)一步學(xué)習(xí)和終身的發(fā)展。

第二:注重培養(yǎng)學(xué)生的實(shí)踐能力。

這節(jié)課的重點(diǎn)是通過實(shí)驗(yàn)來探究圓錐體積公式的由來,侯老師主要引導(dǎo)學(xué)生做了三個(gè)實(shí)驗(yàn)。一是比較圓柱和圓錐是等底等高,強(qiáng)調(diào)圓柱和圓錐是等底等高這個(gè)必要條件;二是做用裝滿小米的圓柱在空?qǐng)A錐中倒的實(shí)驗(yàn),使學(xué)生理解等底等高的圓柱和圓錐存在著一定的倍數(shù)關(guān)系;三是特別設(shè)計(jì)了一組不等底或不等高的圓柱和圓錐來做倒米實(shí)驗(yàn),再次強(qiáng)調(diào)只有等底等高的圓柱和圓錐存在著的倍數(shù)關(guān)系。在實(shí)驗(yàn)前,讓學(xué)生了解實(shí)驗(yàn)要求,并且提出三個(gè)實(shí)驗(yàn)?zāi)康模海?、圓錐的底面與圓柱的底面有什么關(guān)系?他們的高有什么關(guān)系?你是怎么知道的?2、圓錐的體積和與它等底等高的圓柱體積有什么關(guān)系?3、怎樣計(jì)算圓錐的體積?計(jì)算公式是什么?)以實(shí)驗(yàn)?zāi)康臑橹骶€,讓學(xué)生小組合作,通過動(dòng)手操作,有眼睛觀察,動(dòng)腦筋思考,多種感官一起參與活動(dòng),由直觀到抽象,層層深入,探索出圓錐體積公式的由來,從而理解和掌握了圓錐體積的計(jì)算公式,培養(yǎng)了學(xué)生的觀察能力、操作能力和初步的空間觀念,克服了幾何形體公式計(jì)算教學(xué)中的重結(jié)論、輕過程,重記憶、輕理解,重知識(shí)、輕能力的弊病。這樣的學(xué)習(xí),學(xué)生學(xué)得活,記得牢,既發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)過程中,是一個(gè)探索者、研究者、合作者、發(fā)現(xiàn)者,并且獲得了富有成效的學(xué)習(xí)體驗(yàn)。

不過這節(jié)課也存在一些不足,教學(xué)環(huán)節(jié)的銜接和時(shí)間的分配有些不恰當(dāng),教學(xué)方法沒有多樣化,欠缺改革創(chuàng)新。例如:在教學(xué)新課時(shí),像傳統(tǒng)教學(xué)那樣,直接拿出圓柱和圓錐容器的教具,讓學(xué)生根據(jù)實(shí)驗(yàn)要求和目的,進(jìn)行倒米實(shí)驗(yàn)。我認(rèn)為在實(shí)驗(yàn)前,一定要為學(xué)生創(chuàng)設(shè)良好的問題情景,如(你覺得圓錐體積的大小與它的什么有關(guān)?你認(rèn)為圓錐的體積和什么圖形的`體積關(guān)系最密切?猜一猜它們的體積有什么關(guān)系呢?你們想知道它們的關(guān)系嗎?)通過師生交流、問答、猜想等形式,強(qiáng)化問題意識(shí),激發(fā)學(xué)生的思維,使學(xué)生產(chǎn)生強(qiáng)烈的求知欲望。這時(shí)候,學(xué)生就迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)來就興趣盎然。這樣學(xué)生的思維被激活了,學(xué)習(xí)的積極性提高了,興趣變濃了,課堂氣氛變得熱烈,那么教學(xué)效率,教學(xué)效果就可想而知了。

當(dāng)然,我相信#老師通過這次的鍛煉,在今后的教學(xué)道路上一定會(huì)越走越寬廣。謝謝大家!

圓錐體積的說課稿篇十

大家下午好!今天我將要為大家講的課題是“基本幾何體(圓柱圓錐)”。是高教版《機(jī)械制圖》第三章正投影法和三視圖第六節(jié)的內(nèi)容。

1、教材的地位和作用。

今天所講的內(nèi)容屬于第二版《機(jī)械制圖》中第三章的第6節(jié),整個(gè)這一章主要講正投影法和三視圖,正投影法是繪圖和閱讀機(jī)械圖樣的理論基礎(chǔ),這一節(jié)主要講基本幾何體的投影和表面點(diǎn)的求法,是正投影法的應(yīng)用是今后學(xué)習(xí)的基礎(chǔ)。

2、學(xué)情分析。

要想講好一堂課,不僅要備教材,還要備學(xué)生,只有對(duì)授課對(duì)象也就是學(xué)生的知識(shí)結(jié)構(gòu)、心理特征進(jìn)行分析、掌握,才能制定出切合實(shí)際的教學(xué)目標(biāo)和教學(xué)重點(diǎn)。在學(xué)習(xí)本節(jié)內(nèi)容之前,在學(xué)習(xí)本節(jié)內(nèi)容之前,學(xué)生已經(jīng)掌握學(xué)習(xí)畫平面立體三視圖和求它們表面上點(diǎn)的投影的能力水平基礎(chǔ),知識(shí)水平不應(yīng)有困難,能力水平也不應(yīng)有困難,但要通過多做練習(xí)來達(dá)到熟練的目的,并且注意對(duì)個(gè)別學(xué)習(xí)困難學(xué)生的輔導(dǎo)。

3、教學(xué)目標(biāo)。

知識(shí)目標(biāo)。

1)、掌握?qǐng)A柱、圓錐的形成和三視圖特征;

2)、掌握在圓柱、圓錐表面上求點(diǎn)的投影的作圖方法。

3)、熟知基本體尺寸標(biāo)注的基本方法。

能力目標(biāo)。

1)、能正確的畫出圓柱、圓錐的三視圖和在它們表面上求點(diǎn)的投影。

2)、具備正確標(biāo)注基本體尺寸的能力。

素質(zhì)目標(biāo)。

培養(yǎng)學(xué)生的觀察能力和學(xué)習(xí)能力及對(duì)空間形體的分析能力。

4、教學(xué)重點(diǎn)和難點(diǎn)。

[教學(xué)重點(diǎn)]。

1、圓柱、圓錐三視圖特征和投影分析、視圖畫法、表面上點(diǎn)的投影;

2、看圖、繪圖、標(biāo)注尺寸三大能力的培養(yǎng)。

[難點(diǎn)]。

空間概念的`建立和訓(xùn)練;圓錐表面上點(diǎn)的投影作圖方法。

1.講授法:通過老師的講解,使學(xué)生掌握相關(guān)知識(shí)。

3.模型展示發(fā):課前老師指導(dǎo)學(xué)生自己做些幾何體幫助自己分析和觀察。

教師的教是為了不教而教,這要求我們教師在授課中不僅要讓學(xué)生聽懂、學(xué)會(huì),還要指導(dǎo)他們的學(xué)習(xí)方法,不能讓學(xué)生離開老師這根拐棍就不會(huì)走路了,必須學(xué)會(huì)自主學(xué)習(xí)。在本節(jié)內(nèi)容的講授中要引導(dǎo)學(xué)生積極思考,善于提問,形成主動(dòng)探究和協(xié)作學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣。

1、復(fù)習(xí)導(dǎo)入(10分鐘)。

復(fù)習(xí)回顧。

1)、簡(jiǎn)述棱柱、棱錐的視圖特征和畫圖步驟,求棱錐表面上點(diǎn)的投影的方法;

2)、反饋、講評(píng)作業(yè)批改情況;

3)、預(yù)習(xí)檢測(cè):圓柱和圓錐是怎樣形成的?圓柱的三視圖和四棱柱的三視圖有什么不同?

導(dǎo)入新課。

簡(jiǎn)述本次課概念、要點(diǎn)、作用和地位;導(dǎo)出學(xué)習(xí)目標(biāo)。

圓柱體和圓錐體都是機(jī)器零件上應(yīng)用最廣的基本幾何體之一,本次課主要討論兩基本體的視圖分析,并通過分析,熟練掌握其三視圖的讀、畫和標(biāo)注方法和能力。

2、新課教學(xué)(75分鐘)。

1)、結(jié)合課件和模型同學(xué)們共同觀察形體的特征。特別是引出并講清“輪廓素線”(或稱為轉(zhuǎn)向輪廓線)的概念和意義。這為解決其表面交線(截交線、相貫線)的求作問題,提供依據(jù)和方法。

2)、根據(jù)立體模型和形體特征作立體的三視圖,這當(dāng)中主要突出作圖步驟。

3)、利用特殊位置面具有積聚性的特性求圓柱表面點(diǎn)的投影和對(duì)圓柱進(jìn)行尺寸標(biāo)注。講解時(shí)一定突出圓柱和圓錐三視圖的特征,拓展學(xué)生的感性積累和空間想象力,回顧輔助線法求棱錐一般位置面上點(diǎn)的投影的方法,引出素線法(或緯圓法)求圓錐面上點(diǎn)的投影的作圖方法。啟發(fā)學(xué)生舉一反三。

4)、用一些課堂練習(xí)鞏固,教師點(diǎn)撥解答難點(diǎn)。改變立體的放置位置,多位之多答案,鼓勵(lì)發(fā)散思維。

3、小結(jié)。

1)、結(jié)合課件和板書簡(jiǎn)述圓柱、圓錐的三視圖作圖步驟:畫基準(zhǔn)作俯視圖、根據(jù)三等關(guān)系作主視圖、最后作左視圖。

2)、表面上求點(diǎn)的投影的基本方法。素線法(輔助線法)或緯圓法(輔助圓法)。

4、作業(yè)。

1)、習(xí)題:學(xué)生討論完成習(xí)題集35、36各小題。

2)、思考題:p672、3、4各題。

3)、預(yù)習(xí):截交線集中疑難問題。

基本幾何體(圓柱圓錐)。

一、曲面立體的定義。

二、圓柱。

三視圖分析作圖步驟:畫圖。

1、基準(zhǔn)。

2、俯視圖。

3、主視圖。

4、左視圖。

表面找點(diǎn)作圖充分利用積聚性。

三、圓錐。

三視圖分析作圖步驟同六棱柱、畫圖。

表面點(diǎn)的投影充分利用頂點(diǎn)作輔助線和輔助面。

圓錐體積的說課稿篇十一

近日,在數(shù)學(xué)課上學(xué)習(xí)了圓錐體積的知識(shí),我對(duì)這一部分內(nèi)容產(chǎn)生了濃厚的興趣。不僅僅是因?yàn)樗c實(shí)際生活聯(lián)系緊密,還因?yàn)橥ㄟ^學(xué)習(xí)圓錐體積,我體會(huì)到了數(shù)學(xué)的魅力和思維的樂趣。以下是我對(duì)圓錐體積課的心得體會(huì)。

首先,學(xué)習(xí)圓錐體積課程,我深刻感受到數(shù)學(xué)的實(shí)用性。圓錐體積作為幾何學(xué)中的一個(gè)重要概念,在我們?nèi)粘I钪须S處可見。比如,可樂瓶、冰淇淋蛋筒、充電寶外殼等等,它們的形狀都屬于圓錐體的范疇。通過學(xué)習(xí)圓錐體積,我能夠計(jì)算出這些實(shí)物的容積,從而更好地理解它們的結(jié)構(gòu)和運(yùn)作原理。這使我深刻認(rèn)識(shí)到了數(shù)學(xué)的生活意義,同時(shí)也加深了我對(duì)圓錐體積的興趣。

其次,學(xué)習(xí)圓錐體積課程,我認(rèn)識(shí)到數(shù)學(xué)的邏輯思維對(duì)問題解決的重要性。在計(jì)算圓錐體積的過程中,我們需要運(yùn)用到諸如半徑、高、底面積等多個(gè)數(shù)學(xué)概念。通過對(duì)這些概念的理解和運(yùn)用,我能夠逐步解決復(fù)雜的圓錐體積問題。而這一過程中,邏輯思維是不可或缺的。只有清晰的邏輯思路,才能保證我們?cè)谟?jì)算中不會(huì)出錯(cuò)。通過圓錐體積課程,我的邏輯思維能力得到了鍛煉和提升,我相信這對(duì)于我今后的學(xué)習(xí)和工作都起到了積極作用。

此外,學(xué)習(xí)圓錐體積課程,我也認(rèn)識(shí)到了數(shù)學(xué)的美妙之處。在圓錐體積的計(jì)算過程中,我們經(jīng)常需要運(yùn)用到一些復(fù)雜的數(shù)學(xué)公式,如勾股定理、三角函數(shù)等。這些公式不僅僅是為了省略繁瑣的計(jì)算步驟,更是數(shù)學(xué)之美的展現(xiàn)。數(shù)學(xué)公式的簡(jiǎn)潔性和準(zhǔn)確性使我為之驚嘆,讓我深深感受到了數(shù)學(xué)的魅力。通過學(xué)習(xí)圓錐體積,我也意識(shí)到,數(shù)學(xué)不僅僅是一門學(xué)科,更是一種思維方式和精神追求。

最后,學(xué)習(xí)圓錐體積課程,我不僅僅是為了應(yīng)付考試,更是為了培養(yǎng)自己的創(chuàng)新思維和解決問題的能力。圓錐體積的計(jì)算并不總是有固定的公式可以套用,有時(shí)候我們需要運(yùn)用到一些創(chuàng)新思維去解決特殊情況下的問題。通過學(xué)習(xí)圓錐體積,我逐漸摒棄了對(duì)模板化思維的依賴,開始注重培養(yǎng)自己的創(chuàng)新思維和解決問題的能力。我相信,這種能力對(duì)于我今后在學(xué)習(xí)和工作中遇到的各種問題都將起到積極的推動(dòng)作用。

綜上所述,學(xué)習(xí)圓錐體積課程是一次令我受益匪淺的經(jīng)歷。通過學(xué)習(xí),我認(rèn)識(shí)到了數(shù)學(xué)的實(shí)用性和美妙之處,同時(shí)也鍛煉了我的邏輯思維和創(chuàng)新能力。我對(duì)圓錐體積的興趣更加濃厚,并更多地將數(shù)學(xué)應(yīng)用到實(shí)際生活中。相信利用所學(xué)知識(shí),我能夠在未來的學(xué)習(xí)和工作中取得更大的成功。

圓錐體積的說課稿篇十二

并能運(yùn)用公式正確地計(jì)算圓錐的體積,發(fā)展學(xué)生的空間觀念。

教學(xué)難點(diǎn):圓錐的體積應(yīng)用。

學(xué)具準(zhǔn)備:等底等高的圓柱和圓錐,水和沙,多媒體課件。

教學(xué)時(shí)間:一課時(shí)。

教學(xué)過程:。

一、復(fù)習(xí)。

1、圓錐有什么特征?(課件出示)。

使學(xué)生進(jìn)一步熟悉圓錐的特征:底面,側(cè)面,高和頂點(diǎn)。

2、圓柱體積的計(jì)算公式是什么?

指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。同時(shí)滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。

二、導(dǎo)人新課。

出示一個(gè)圓錐形的谷堆,給出底面直徑和高,讓學(xué)生思考如何求它的體積。

三、新課。

師:請(qǐng)大家回億一下,我們是怎樣得到圓柱體積的計(jì)算公式的?

指名學(xué)生敘述圓柱體積計(jì)算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長(zhǎng)方體來求得的。

師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的.圖形來求呢?

先讓學(xué)生討論一下用什么方法求,然后指出:我們可以通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐體積的公式。

教師拿出等底等高的圓柱和圓錐各一個(gè),“大家看,這個(gè)圓錐和圓柱有什么共同的地方?”

然后通過演示后,指出:“這個(gè)圓錐和圓柱是等底等高的,下面我們通過實(shí)驗(yàn),看看它們之間的體積有什么關(guān)系?”

學(xué)生分組實(shí)驗(yàn)。

匯報(bào)實(shí)驗(yàn)結(jié)果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。

多指名說。

問:把圓柱裝滿一共倒了幾次?

生:3次。

師:這說明了什么?

生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

多找?guī)酌瑢W(xué)說。

師:圓柱的體積等于什么?

生:等于“底面積×高”。

引導(dǎo)學(xué)生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計(jì)算公式。

板書:圓錐的體積=1/3×底面積×高。

師:用字母應(yīng)該怎樣表示?

然后板書字母公式:v=1/3sh。

師:在這個(gè)公式里你覺得哪里最應(yīng)該注意?

1/3×19×12=76((立方厘米))。

答:這個(gè)零件體積是76立方厘米。

做一做:課件出示,學(xué)生回答后,教師訂正。

1、一個(gè)圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

2、已知圓錐的底面半徑r和高h(yuǎn),如何求體積v?

3、已知圓錐的底面直徑d和高h(yuǎn),如何求體積v?

4、已知圓錐的底面周長(zhǎng)c和高h(yuǎn),如何求體積v?

5、一個(gè)圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

例2課件出示)在打谷場(chǎng)上,有一個(gè)近似于圓錐的小麥堆,測(cè)得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)。

判斷:課件出示,學(xué)生回答后,教師訂正。

1、圓柱體的體積一定比圓錐體的體積大()。

2、圓錐的體積等于和它等底等高的圓柱體積的()。

3、正方體、長(zhǎng)方體、圓錐體的體積都等于底面積×高。()。

4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米()。

四、教師小結(jié)。

這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你還有什么問題嗎?

五、作業(yè)。課本練習(xí)。

圓錐體積的說課稿篇十三

2、學(xué)生說,教師板書:

圓錐圓柱。

特征1個(gè)底面2個(gè)。

扇形側(cè)面展開長(zhǎng)方形。

體積v=1/3shv=sh。

二、提出本節(jié)課練習(xí)的內(nèi)容和目標(biāo)。

三、課堂練習(xí)。

(一)、基本訓(xùn)練。

1、填空課本1----2(獨(dú)立完成后校對(duì))。

已知:底面積、直徑、周長(zhǎng)與高求體積(小黑板出示)。

(二)、綜合訓(xùn)練:

1、判斷。

(2)長(zhǎng)方體、正方體、圓柱和圓錐的體積公式都可用v=sh。

(3)一個(gè)圓柱形容器盛滿汽油有2.5升,這個(gè)容器的容積就是2.5升。

(4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米。

2、應(yīng)用:練習(xí)四第45題任選一題。

3、發(fā)展題:獨(dú)立思考后校對(duì)。

四課堂小結(jié):說說本節(jié)課的收獲。

圓錐體積的說課稿篇十四

2、求下列各圓柱的體積。(口答)。

(1)底面積是5平方厘米,高是6厘米。

(2)底面半徑4分米,高是10分米。

(3)底面直徑2米,高是3米。

師:剛才我們復(fù)習(xí)了圓柱的體積公式并應(yīng)用這個(gè)公式計(jì)算出了圓柱的體積,那么圓柱和圓錐有什么關(guān)系呢?這節(jié)課我們就來研究圓錐的體積。(板書:圓錐的體積)。

二、新課教學(xué)。

師:圓錐的底面是什么形狀的?什么是圓錐的高?請(qǐng)拿出一個(gè)同學(xué)們自己做的圓錐講一講。

生:圓錐的底面是圓形的。

生:從圓錐的頂點(diǎn)到底面圓心的距離是圓錐的高。

師:你能上來指出這個(gè)圓錐的高嗎?

師:很好,因?yàn)閳A錐的高我們一般無(wú)法到里面去測(cè)量,所以常常這樣量出它的高。

師:你們看到過哪些物體是圓錐形狀的?(略)。

師:對(duì)。在生活中有很多圓錐形的物體。

師:剛才我們已經(jīng)認(rèn)識(shí)了圓錐?,F(xiàn)在我們?cè)賮硌芯繄A錐的體積。請(qǐng)同學(xué)們拿出一對(duì)等底等高圓錐和圓柱。想一想用什么辦法能研究出等地等高的圓錐和圓柱的體積之間存在什么關(guān)系,然后把你的想法放在小組中交流,再分工進(jìn)行實(shí)驗(yàn)。下面我們采用實(shí)驗(yàn)的方法來推導(dǎo)圓錐體的體積公式(邊說邊演示),先在圓錐內(nèi)裝滿水,然后把水倒入圓柱內(nèi),看看幾次可將圓柱倒?jié)M?,F(xiàn)在我們分小組做實(shí)驗(yàn),大家邊做邊討論實(shí)驗(yàn)要求,如有困難可以看書第23頁(yè)。

出示小黑板:

1、圓錐的體積和同它等底等高的圓柱的體積有什么關(guān)系?

學(xué)生分組做實(shí)驗(yàn),老師巡回指導(dǎo)。

生:圓柱的體積是圓錐體積的3倍。

生:圓錐的體積是同它等底等高的圓柱體權(quán)的1/3。

板書:圓錐的體積等于同它等底等高的圓柱體積的1/3。

師:得出這個(gè)結(jié)論的同學(xué)請(qǐng)舉手。(略)你們是怎么得出這個(gè)結(jié)論的呢?

生:我們先在圓錐內(nèi)裝滿沙,然后倒人圓柱內(nèi)。這樣倒了三次,正好將圓柱裝滿。所以,圓錐的體積是同它等底等高的圓柱體積的1/3。

師:說得很好。那么圓錐的體積怎么算呢?

生:可以先算出與它等底等高的圓柱的體積,用底面積乘以高,再除以3,就是圓錐的體積。

師:誰(shuí)能說說圓錐的體積公式。

師:老師也做了一個(gè)同樣實(shí)驗(yàn)請(qǐng)同學(xué)認(rèn)真看一看。想一想有什么話對(duì)老師說嗎?請(qǐng)看電視。

師:請(qǐng)大家把書翻到第42頁(yè),將你認(rèn)為重要的字、詞、句圈圈劃劃,并說說理由。

生:我認(rèn)為"圓錐的體積v等于和它等底等高的圓柱體積的三分之一。"這句話很重要。

生:我認(rèn)為這句話中"等底等高"和"三分之一"這幾個(gè)字特別重要。

師:大家說得很對(duì),那么為什么這幾個(gè)字特別重要?如果底和離不相等的圓錐和圓柱有沒有三分之一這個(gè)關(guān)系呢?我們也來做個(gè)實(shí)驗(yàn)。大家還有兩個(gè)是等底不等高的圓錐和圓柱,請(qǐng)同學(xué)們用剛才做實(shí)驗(yàn)的方法試試看。

師:等底不等高或者等高不等底的圓錐體積不是圓柱體積的1/3。師:可見圓錐的體積等于圓柱體積的三分之一的關(guān)鍵條件是等地等高。

師:下面我們就根據(jù)"等底等高的圓錐體積是圓柱體積的1/3"這個(gè)關(guān)系來解決下列問題。

例l:一個(gè)圓錐形零件,底面積是19平方厘米,高是12厘米。這個(gè)零件的體積是多少?

(兩名學(xué)生板演,老師巡視)。

師:這位同學(xué)做的對(duì)不對(duì)?

生:對(duì)!

師:和他做的一-樣的同學(xué)請(qǐng)舉手。(絕大多數(shù)同學(xué)舉手)。

師:那么這位同學(xué)做錯(cuò)在哪里呢?(指那位做錯(cuò)的同學(xué)做的)。

生:他漏寫了1/3。用底面積乘以高算出來的是圓柱的體積,圓錐的體積還要再乘以1/3。

師:對(duì)了。剛才我們通過實(shí)驗(yàn)知道了圓錐的體積等于同它等底等高的圓柱體積的三分之一,從而推導(dǎo)出圓錐的體積計(jì)算公式,即v=1/3sh。我們?cè)谟眠@個(gè)公式計(jì)算圓錐的體積時(shí),要特別注意,1/3不能漏掉。

圓錐體積的說課稿篇十五

本節(jié)課屬于空間與圖形知識(shí)的教學(xué),是小學(xué)階段幾何知識(shí)的重難點(diǎn)部分,是小學(xué)學(xué)習(xí)立體圖形體積計(jì)算的飛躍,通過這部分知識(shí)的教學(xué),可以發(fā)展學(xué)生的空間觀念、想象能力,較深入地理解幾何體體積推導(dǎo)方法的新領(lǐng)域,為學(xué)生進(jìn)一步學(xué)習(xí)幾何知識(shí)奠定良好的基礎(chǔ)。

本節(jié)內(nèi)容是在學(xué)生了解了圓錐的特征,掌握了圓柱體積的計(jì)算方法基礎(chǔ)上進(jìn)行教學(xué)的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導(dǎo)學(xué)生經(jīng)歷“猜測(cè)、類比、觀察、實(shí)驗(yàn)、探究、推理、總結(jié)”的探索過程,理解掌握求圓錐體積的計(jì)算公式,會(huì)運(yùn)用公式計(jì)算圓錐的體積。這樣不僅幫助學(xué)生建立空間觀念,還能培養(yǎng)學(xué)生抽象的邏輯思維能力,激發(fā)學(xué)生的想象力.

數(shù)學(xué)課程標(biāo)準(zhǔn)中指出:應(yīng)放手讓學(xué)生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結(jié)過程中掌握知識(shí)、發(fā)展空間觀念,從而提高學(xué)生自主解決問題的能力。

1、知識(shí)與技能:掌握?qǐng)A錐的體積計(jì)算公式,能運(yùn)用公式求圓錐的體積,并且能運(yùn)用這一知識(shí)解決生活中一些簡(jiǎn)單的實(shí)際問題。

2、過程與方法:通過“直覺猜想——試驗(yàn)探索——合作交流——得出結(jié)論——實(shí)踐運(yùn)用”探索過程,獲得圓錐體積的推導(dǎo)過程和學(xué)習(xí)的方法。

3、情感、態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生勇于探索的求知精神,感受到數(shù)學(xué)來源于生活,能積極參與數(shù)學(xué)活動(dòng),自覺養(yǎng)成與人合作交流與獨(dú)立思考的良好習(xí)慣。

圓錐體積公式的理解,并能運(yùn)用公式求圓錐的體積。

圓錐體積公式的推導(dǎo)

學(xué)生已學(xué)習(xí)了圓柱的體積計(jì)算,在教學(xué)中采用放手讓學(xué)生操作、小組合作探討的形式,讓學(xué)生在研討中自主探索,發(fā)現(xiàn)問題并運(yùn)用學(xué)過的圓柱知識(shí)遷移到圓錐,得出結(jié)論。所以對(duì) 于新的知識(shí)教學(xué),他們一定能表現(xiàn)出極大的熱情。

試驗(yàn)探究法 小組合作學(xué)習(xí)法

多媒體課件,等底等高圓柱圓錐各6個(gè),水槽6個(gè)(裝有適量的水)

1課時(shí)

一、回顧舊知識(shí)

1、你能計(jì)算哪些規(guī)則物體的體積?

2、你能說出圓錐各部分的名稱嗎?

設(shè)計(jì)意圖通過對(duì)舊知識(shí)的回顧,進(jìn)一步為學(xué)習(xí)新知識(shí)作好鋪墊。

二、創(chuàng)設(shè)情景 激發(fā)激情

展示磚工師傅使用的鉛錘體(圓錐),你能測(cè)試出它的體積嗎?

設(shè)計(jì)意圖以生活中的數(shù)學(xué)的形式進(jìn)行設(shè)置情景,引疑激趣遷移,激發(fā)學(xué)生好奇心和求知欲。(揭示課題:圓錐的體積)

三、試驗(yàn)探究 合作學(xué)習(xí)(探討圓柱與圓錐體積之間的關(guān)系)

探究一:(分組試驗(yàn))圓柱與圓錐的底和高各有什么關(guān)系?

1、猜想:猜想它們的底、高之間各有什么關(guān)系?

2、試驗(yàn)驗(yàn)證猜想:每組拿出圓柱、圓錐各1個(gè),分組試驗(yàn),試驗(yàn)后記錄結(jié)果;

3、小組匯報(bào)試驗(yàn)結(jié)論,集體評(píng)議:(注意匯報(bào)出試驗(yàn)步驟和結(jié)論)

4、教師介紹數(shù)學(xué)專用名詞:等底 等高

設(shè)計(jì)意圖通過探究一活動(dòng),初步突破了本課的難點(diǎn),為探究二活動(dòng)活動(dòng)開展作好了鋪墊。

探究二:(分組試驗(yàn))研討等底等高圓柱與圓錐的體積之間有什么關(guān)系?

1、大膽猜想:等底等高圓柱與圓錐體積之間的關(guān)系

2、試驗(yàn)驗(yàn)證猜想:每組拿出水槽(裝有適量的水),通過試驗(yàn),你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關(guān)系?邊試驗(yàn)邊記錄試驗(yàn)數(shù)據(jù)(教師巡視指導(dǎo)每組的試驗(yàn))

3、小組匯報(bào)試驗(yàn)結(jié)論(提醒學(xué)生匯報(bào)出試驗(yàn)步驟)

(1)圓椎的體積是圓柱體積的3倍;

(2)圓錐的體積是圓柱體積的三分之一;

(3)當(dāng)?shù)鹊椎雀邥r(shí),圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。

4、通過學(xué)生匯報(bào)的試驗(yàn)結(jié)論,分析歸納總結(jié)試驗(yàn)結(jié)論。

5、你能用字母表示出它們的關(guān)系嗎?要求圓錐的體積必須知道什么條件呢?(學(xué)生反復(fù)朗讀公式)

通過學(xué)生分組試驗(yàn)探究,在實(shí)驗(yàn)過程中自主猜想、感知、驗(yàn)證、得出結(jié)論的過程,充分調(diào)動(dòng)學(xué)生主動(dòng)探索的意識(shí),激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的動(dòng)手能力,突破了本課的難點(diǎn),突出了教學(xué)的重點(diǎn)。

探究三:(伸展試驗(yàn)---演示試驗(yàn))研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關(guān)系。

1、觀察老師的試驗(yàn),你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關(guān)系?

3、學(xué)生通過觀看試驗(yàn)匯報(bào)結(jié)論。

4、教師引導(dǎo)學(xué)生分析歸納總結(jié)圓錐體積是圓柱體積的三分之一所存在的條件。

5、結(jié)合探究二和探究三,進(jìn)一步引導(dǎo)學(xué)生掌握?qǐng)A錐的體積公式。

通過教師課件演示試驗(yàn),進(jìn)一步讓學(xué)生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進(jìn)一步加強(qiáng)學(xué)生對(duì)圓錐體積公式理解,再次突出了本課的難點(diǎn),培養(yǎng)了學(xué)生的觀察能,分析能力,邏輯思維能力等,進(jìn)一步讓學(xué)生從感性認(rèn)識(shí)上升到了理性認(rèn)識(shí)。

四、實(shí)踐運(yùn)用 提升技能

2、口答題:題目?jī)?nèi)容見多媒體展示獨(dú)立思考---抽生匯報(bào)---學(xué)生評(píng)議

設(shè)計(jì)意圖通過判斷題、口答題題型的訓(xùn)練,及時(shí)檢查學(xué)生對(duì)所學(xué)知識(shí)的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學(xué)生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機(jī)會(huì),以達(dá)到培養(yǎng)能力、發(fā)展個(gè)性的目的。

五、談?wù)勈斋@:這節(jié)課你學(xué)到了什么呢?

六、課堂作業(yè):

1、做在書上作業(yè):練習(xí)四 第4、7題

2、坐在作業(yè)本上作業(yè):練習(xí)四 第3題

圓錐體積的說課稿篇十六

1、通過實(shí)驗(yàn)發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關(guān)系,從而得出體積的計(jì)算公式,能運(yùn)用公式解答有關(guān)實(shí)際問題。

2、通過動(dòng)手操作參與實(shí)驗(yàn),發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關(guān)系,并通過猜想、探索和發(fā)現(xiàn)的過程,推導(dǎo)出圓錐的體積公式。

3、通過實(shí)驗(yàn),引導(dǎo)學(xué)生探索知識(shí)的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,感受數(shù)學(xué)方法的內(nèi)在魅力,激發(fā)學(xué)生參加探索的興趣。

教學(xué)重點(diǎn): 通過實(shí)驗(yàn)的方法,得到計(jì)算圓錐的體積。

教學(xué)難點(diǎn):運(yùn)用圓錐的體積公式進(jìn)行正確地計(jì)算。

教學(xué)準(zhǔn)備:等底等高的圓柱和圓錐容器模型各一個(gè)。

一、復(fù)習(xí)導(dǎo)入

師:同學(xué)們,請(qǐng)看大屏幕(課件出示圓柱削成最大圓錐)。

1、圓柱體積的計(jì)算公式是什么? (指名學(xué)生回答)

2、圓錐有什么特征?

同學(xué)們,圓柱的體積我們已經(jīng)知道怎么求,那與它等底等高的圓錐的體積同學(xué)們知道怎么求嗎?讓我們一同走進(jìn)圓錐的體積與等底等高的圓柱體體積有什么關(guān)系的知識(shí)課堂吧?。ò鍟簣A錐的體積)

二、探究新知

課件出示等底等高的圓柱和圓錐

1、引導(dǎo)學(xué)生觀察:這個(gè)圓柱和圓錐有什么相同的地方?

學(xué)生回答:它們是等底等高的。

猜想:

(1)、你認(rèn)為圓錐體積的大小與它的什么有關(guān)?

(2)、你認(rèn)為圓錐的體積和什么圖形的體積關(guān)系最密切?猜一猜它們的體積有什么關(guān)系?

2、學(xué)生動(dòng)手操作實(shí)驗(yàn)

(1)、用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒?jié)M?

(2)、通過實(shí)驗(yàn),你發(fā)現(xiàn)了什么?

小結(jié):通過實(shí)驗(yàn)我們發(fā)現(xiàn)圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一 。

問:把圓柱裝滿一共倒了幾次?

生:3次。

師:這說明了什么?

生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積= 1/3×圓柱體積 )

師:圓柱的體積等于什么?

生:等于“底面積×高”。

師:那么,圓錐的體積可以怎樣表示呢? (板書:圓錐的體積= 1/3×底面積×高)

師:用字母應(yīng)該怎樣表示? (v=1/3sh)

師:在這個(gè)公式里你覺得哪里最應(yīng)該注意?

三、教學(xué)試一試

四、鞏固練習(xí)

1、計(jì)算圓錐的體積

2、判一判

3、算一算

4、拓展延伸

五、總結(jié)

通過這節(jié)課的學(xué)習(xí),你有什么收獲呢?

六、板書:

圓錐的體積=圓柱的體積×1/3

圓錐的體積=底面積×高×1/3

用字母表示v=1/3sh

圓錐體積的說課稿篇十七

1、理解和掌握?qǐng)A錐體體積的計(jì)算方法,并能運(yùn)用公式求圓錐體的體積,并能解決簡(jiǎn)單的實(shí)際問題。

2、通過動(dòng)手實(shí)踐,自主探求圓錐體積的計(jì)算方法,培養(yǎng)學(xué)生初步的邏輯推理能力和創(chuàng)新意識(shí),發(fā)展空間觀念。

3、激發(fā)學(xué)生熱愛生活,勇于探索、樂于與人合作的情趣。

【本文地址:http://aiweibaby.com/zuowen/19363116.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔