總結(jié)是寫給人看的,條理不清,人們就看不下去,即使看了也不知其所以然,這樣就達(dá)不到總結(jié)的目的。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的總結(jié)嗎?以下是小編精心整理的總結(jié)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
蘇教數(shù)學(xué)中考知識點總結(jié)篇一
把一個圖形繞著某一點o轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角。
2、旋轉(zhuǎn)的性質(zhì):
(1) 旋轉(zhuǎn)前后的兩個圖形是全等形。
(2) 兩個對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
(3) 兩個對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角。
3、中心對稱:
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
4、中心對稱的性質(zhì):
(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
(2)關(guān)于中心對稱的兩個圖形是全等圖形。
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
蘇教數(shù)學(xué)中考知識點總結(jié)篇二
二次根式的加減法
知識點1:同類二次根式
(ⅰ)幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數(shù)是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關(guān),而與根號外的因式無關(guān)。
知識點2:合并同類二次根式的方法
合并同類二次根式的理論依據(jù)是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。
知識點3:二次根式的加減法則
二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。
知識點4:二次根式的混合運(yùn)算方法和順序
運(yùn)算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號的先算括號內(nèi)的。
知識點5:二次根式的加減法則與乘除法則的區(qū)別
乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無關(guān),加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡根式。
蘇教數(shù)學(xué)中考知識點總結(jié)篇三
一、 重要概念
1.數(shù)的分類及概念
數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見的非負(fù)數(shù)有:
性質(zhì):若干個非負(fù)數(shù)的和為0,則每個非負(fù)擔(dān)數(shù)均為0。
3.倒數(shù): ①定義及表示法
②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01;a>1時,1/a<1;d.積為1。
4.相反數(shù): ①定義及表示法
②性質(zhì):a.a≠0時,a≠-a;b.a與-a在數(shù)軸上的位置;c.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”)
②作用:a.直觀地比較實數(shù)的大小;b.明確體現(xiàn)絕對值意義;c.建立點與實數(shù)的一一對應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實數(shù)a在數(shù)軸上所對應(yīng)的點到原點的距離。
②│a│≥0,符號“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號。
二、 實數(shù)的運(yùn)算
1. 運(yùn)算法則(加、減、乘、除、乘方、開方)
2. 運(yùn)算定律(五個—加法[乘法]交換律、結(jié)合律;[乘法對加法的]
分配律)
3. 運(yùn)算順序:a.高級運(yùn)算到低級運(yùn)算;b.(同級運(yùn)算)從“左”
到“右”(如5÷ ×5);c.(有括號時)由“小”到“中”到“大”。
三、 應(yīng)用舉例(略)
附:典型例題
1. 已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。
【本文地址:http://www.aiweibaby.com/zuowen/2420003.html】