2023年七年級(jí)從算式到方程教案(優(yōu)秀18篇)

格式:DOC 上傳日期:2023-11-08 19:40:17
2023年七年級(jí)從算式到方程教案(優(yōu)秀18篇)
時(shí)間:2023-11-08 19:40:17     小編:雁落霞

它是教師在教學(xué)過程中對(duì)教學(xué)內(nèi)容、教學(xué)目標(biāo)、教學(xué)方法和教學(xué)評(píng)價(jià)等進(jìn)行規(guī)范和規(guī)劃的重要文件。教案的編寫過程中應(yīng)注重對(duì)學(xué)生的個(gè)體差異和特點(diǎn)的考慮,確保教學(xué)過程個(gè)性化。學(xué)校和教育部門可以通過教案范文的集成和分享,促進(jìn)教學(xué)質(zhì)量的整體提高。

七年級(jí)從算式到方程教案篇一

1.小明用天平測(cè)量物體的質(zhì)量(如下圖),已知每個(gè)小砝碼的質(zhì)量為1克,此時(shí)天平處于平衡狀態(tài).若設(shè)大砝碼的質(zhì)量為x克.

考查說明:本題主要考查等式基本性質(zhì)1.

答案與解析:根據(jù)等式基本性質(zhì)1:等式兩邊同時(shí)加或減去同一個(gè)數(shù)或式子,結(jié)果仍為等式.

2.方程3y=。

兩邊都除以3得y=1。

改正:________________________________________________.

考查說明:本題主要考查等式基本性質(zhì)2并熟練運(yùn)用.

答案與解析:得y=。

兩邊同時(shí)除以3時(shí),右邊也要除以3,不是乘以3。

3.當(dāng)x=時(shí),60-5x=0.

考查說明:本題主要考查利用等式兩條基本性質(zhì)來解簡(jiǎn)單方程.

答案與解析:12.由原方程和等式性質(zhì)1得5x=60,再由等式性質(zhì)2,兩邊同除以5,得x=12.

4.方程的解是(36,48中選填一個(gè))。

考查說明:本題考查的知識(shí)點(diǎn)是方程的解的概念,使得等號(hào)成立即可.

答案與解析:36.方程的解使等式兩邊相等,把兩個(gè)數(shù)代入驗(yàn)算即可.

5.一年三班55人,一年八班29人,因植樹需要從三班中抽出x人到八班,使得兩班人數(shù)相同,則根據(jù)題意可列方程為_____________.

考查說明:本題主要考查根據(jù)題意找等量關(guān)系,從而列出方程.

答案與解析:55-x=29+x.等量關(guān)系為:抽調(diào)后,三班人數(shù)=八班人數(shù),關(guān)鍵要理解三班少了x人的同時(shí),八班多了x人.

二、選擇題。

6.下列方程中,是一元一次方程的是()。

a、

b、

c、

d、

考查說明:本題主要考查一元一次方程的概念.

答案與解析:a.a和b都需要化簡(jiǎn)后再判斷,c明顯是二元的,d分母中含未知數(shù),不是整式方程.

7.根據(jù)下列條件能列出方程的是()。

a.一個(gè)數(shù)的'與另一個(gè)數(shù)的的和。

b.與1的差的4倍是8。

c.和的60%。

d.甲的3倍與乙的差的2倍。

考查說明:本題考查的知識(shí)點(diǎn)是方程與代數(shù)式的區(qū)別.

答案與解析:b.其余幾個(gè)答案都不能列出等號(hào).

三、解答題。

考查說明:本題考查的知識(shí)點(diǎn)是列一元一次方程解應(yīng)用題,并會(huì)利用等式性質(zhì)解簡(jiǎn)單的一元一次方程.本題等量關(guān)系為:教師票價(jià)+學(xué)生票價(jià)=910.

答案與解析:設(shè):學(xué)生有x人,根據(jù)題意。

列出方程得70+70x×=910,

解方程得70x×=840,

即35x=840,

所以x=24.

七年級(jí)從算式到方程教案篇二

堅(jiān)持黨的基本路線,擁護(hù)中國共產(chǎn)黨的領(lǐng)導(dǎo),貫徹黨的教育方針、政策,使自己真正成為時(shí)代前進(jìn)的促進(jìn)派。認(rèn)真學(xué)習(xí)《教師法》、《教育法》、《義務(wù)教育法》、《教師職業(yè)道德規(guī)范》及《未成年人保護(hù)法》等法律法規(guī),使自己對(duì)各項(xiàng)法律法規(guī)有更高的認(rèn)識(shí),做到以法執(zhí)教。忠誠于黨的教育事業(yè),立足教壇,無私奉獻(xiàn),全心全意地搞好教學(xué)工作,做一名合格的人民教師。

二、學(xué)生情況分析。

本學(xué)期我擔(dān)任七年級(jí)3班數(shù)學(xué)教學(xué),該班共有學(xué)生38人。七年級(jí)學(xué)生往往對(duì)課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導(dǎo)。學(xué)習(xí)離不開思維,善思則學(xué)得活,效率高,不善思則學(xué)得死,效果差。七年級(jí)學(xué)生常常固守小學(xué)算術(shù)中的思維定勢(shì),思路狹窄、呆滯,不利于后繼學(xué)習(xí),要重視對(duì)學(xué)生進(jìn)行思法指導(dǎo)。學(xué)生在解題時(shí),在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對(duì)學(xué)生進(jìn)行寫法指導(dǎo)。學(xué)生是否掌握良好的記憶方法與其學(xué)業(yè)成績的好壞相關(guān),七年級(jí)學(xué)生由于正處在初級(jí)的邏輯思維階段,識(shí)記知識(shí)時(shí)機(jī)械記憶的成份較多,理解記憶的成份較少,這就不能適應(yīng)七年級(jí)教學(xué)的新要求,要重視對(duì)學(xué)生進(jìn)行記法指導(dǎo)。

三、教學(xué)目標(biāo)。

(一)知識(shí)與技能。

1.獲得數(shù)學(xué)中的基本理論、概念、原理和規(guī)律等方面的知識(shí),了解并關(guān)注這些知識(shí)在生產(chǎn)、生活和社會(huì)發(fā)展中的應(yīng)用。

2.學(xué)會(huì)將實(shí)踐生活中遇到的實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,從而通過數(shù)學(xué)問題解決實(shí)際問題。體驗(yàn)幾何定理的探究及其推理過程并學(xué)會(huì)在實(shí)際問題進(jìn)行應(yīng)用。

3.初步具有數(shù)學(xué)研究操作的基本技能,一定的科學(xué)探究和實(shí)踐能力,養(yǎng)成良好的科學(xué)思維習(xí)慣。

(二)過程與方法。

1.采用思考、類比、探究、歸納、得出結(jié)論的方法進(jìn)行教學(xué);。

2.發(fā)揮學(xué)生的主體作用,作好探究性活動(dòng);。

3.密切聯(lián)系實(shí)際,激發(fā)學(xué)生的學(xué)習(xí)的積極性,培養(yǎng)學(xué)生的類比、歸納的能力.

(三)情感態(tài)度與價(jià)值觀。

1.理解人與自然、社會(huì)的密切關(guān)系,和諧發(fā)展的主義,提高環(huán)境保護(hù)意識(shí)。

2.逐步形成數(shù)學(xué)的基本觀點(diǎn)和科學(xué)態(tài)度,為確立辯證唯物主義世界觀奠定必在的基礎(chǔ)。

四、教材章節(jié)分析。

第一章《有理數(shù)》。

1.本章的主要內(nèi)容:

對(duì)正、負(fù)數(shù)的認(rèn)識(shí);有理數(shù)的概念及分類;相反數(shù)與絕對(duì)值的概念及求法;數(shù)軸的概念、畫法及其與相反數(shù)與絕對(duì)值的關(guān)系;比較兩個(gè)有理數(shù)大小的方法;有理數(shù)加、減、乘、除、乘方運(yùn)算法則及相關(guān)運(yùn)算律;科學(xué)計(jì)數(shù)法、近似數(shù)、有效數(shù)字的概念及求法。

重點(diǎn):有理數(shù)加、減、乘、除、乘方運(yùn)算。

難點(diǎn):混合運(yùn)算的運(yùn)算順序,對(duì)結(jié)果符號(hào)的確定及對(duì)科學(xué)計(jì)數(shù)法、有效數(shù)字的理解。

2.本章的地位及作用。

本章的知識(shí)是本冊(cè)教材乃至整個(gè)初中數(shù)學(xué)知識(shí)體系的基礎(chǔ),它一方面是算術(shù)到代數(shù)的過渡,另一方面是學(xué)好初中數(shù)學(xué)及與之相關(guān)學(xué)科的關(guān)鍵,尤其有理數(shù)的運(yùn)算在整個(gè)數(shù)學(xué)及相關(guān)學(xué)科中占有極為重要的地位,可以說這一章內(nèi)容是構(gòu)建“數(shù)學(xué)大廈”的地基。

第二章《整式的加減》。

1.本章的主要內(nèi)容。

列代數(shù)式,單項(xiàng)式及其有關(guān)概念,多項(xiàng)式及其有關(guān)概念,去括號(hào)法則,整式的加減,合并同類項(xiàng),求代數(shù)式的值。

重點(diǎn):去括號(hào),合并同類項(xiàng)。

難點(diǎn):對(duì)單項(xiàng)式系數(shù),次數(shù),多項(xiàng)式次數(shù)的理解與應(yīng)用。

2.本章的地位及作用。

整式是簡(jiǎn)單代數(shù)式的一種形式,在日常生活中經(jīng)常要用整式表示有關(guān)的量,體現(xiàn)了變量與常量之間的關(guān)系,加深了對(duì)數(shù)的理解。本章中列代數(shù)式,去括號(hào)及合并同類項(xiàng)是后面學(xué)習(xí)一元一次方程的基礎(chǔ),求代數(shù)式的值在中考命題中占有重要的地位。

第三章《一元一次方程》。

1.本章的主要內(nèi)容。

列方程,一元一次方程的概念及解法,列一元一次方程解應(yīng)用題。

重點(diǎn):列方程,一元一次方程的解法,

難點(diǎn):解有分母的一元一次方程和應(yīng)用一元一次方程解決實(shí)際問題。

2.本章的地位及作用。

一元一次方程是數(shù)學(xué)中的主要內(nèi)容之一,它不僅是學(xué)習(xí)其它方程的基礎(chǔ),而且是一種重要的數(shù)學(xué)思想——方程思想,利用方程思想可以使許多實(shí)際問題變得直接易懂,體會(huì)方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。更深刻地體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。

第四章《圖形認(rèn)識(shí)初步》。

1.本章的主要內(nèi)容、地位及作用。

本章主要介紹了多姿多彩的圖形(立體圖形、平面圖?),以及最基本的圖形——點(diǎn)、線、角等,并在自主探究的過程中,結(jié)合豐富的實(shí)例,探索“兩點(diǎn)確定一條直線”和“兩點(diǎn)間線段最短”的性質(zhì),認(rèn)識(shí)角以及角的表示方法,角的度量,角的畫法,角的比較及余角,補(bǔ)角等,探索了比較線段長短的方法及線段中點(diǎn)。本章中的直線,射線,線段以及角等,都是我們認(rèn)識(shí)復(fù)雜圖形的基礎(chǔ),因此,本章在初中數(shù)學(xué)中占有重要的地位。

2.教學(xué)重點(diǎn)與難點(diǎn)。

教學(xué)難點(diǎn):(1)用幾何語言正確表達(dá)概念和性質(zhì);(2)空間觀念的建立。

五、具體教學(xué)策略。

1.認(rèn)真研讀新課程標(biāo)準(zhǔn),鉆研新教材,根據(jù)新課程標(biāo)準(zhǔn),擴(kuò)充教材內(nèi)容,認(rèn)真上課,批改作業(yè),認(rèn)真輔導(dǎo),讓學(xué)生學(xué)會(huì)認(rèn)真學(xué)習(xí)。

2.興趣是的老師,激發(fā)學(xué)生的興趣,給學(xué)生介紹數(shù)學(xué)家、數(shù)學(xué)史,介紹相應(yīng)的數(shù)學(xué)趣題,給出數(shù)學(xué)課外思考題,激發(fā)學(xué)生的興趣。

3.引導(dǎo)學(xué)生積極參與知識(shí)的構(gòu)建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學(xué)習(xí)課堂,讓學(xué)生體會(huì)學(xué)習(xí)的快樂,享受學(xué)習(xí)。引導(dǎo)學(xué)生寫復(fù)習(xí)提綱,使知識(shí)來源于學(xué)生的構(gòu)造。

4.引導(dǎo)學(xué)生積極歸納解題規(guī)律,引導(dǎo)學(xué)生一題多解,多解歸一,培養(yǎng)學(xué)生透過現(xiàn)象看本質(zhì),提高學(xué)生舉一反三的能力,培養(yǎng)學(xué)生的發(fā)散思維,讓學(xué)生處于一種思如泉涌的狀態(tài)。

5.運(yùn)用讀新課程標(biāo)準(zhǔn)的理念指導(dǎo)教學(xué),積極更新自己腦海中固有的教育理念,不同的教育理念,將帶來不同的教育效果。

6.培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,有助于學(xué)生進(jìn)步提高學(xué)習(xí)成績,發(fā)展學(xué)生的非智力因素,彌補(bǔ)智力上的不足。

7.進(jìn)行個(gè)別輔導(dǎo),優(yōu)生提升能力,扎實(shí)打牢基礎(chǔ)知識(shí),對(duì)差生,一些關(guān)鍵知識(shí),輔導(dǎo)差生過關(guān),為差生以后的發(fā)展鋪平道路。

8.站在系統(tǒng)的高度,使知識(shí)構(gòu)筑在一個(gè)系統(tǒng),上升到哲學(xué)的高度,八方聯(lián)系,渾然一體,使學(xué)生學(xué)得輕松,記得牢固。

9.開展課題學(xué)習(xí),把學(xué)生帶入研究的學(xué)習(xí)中,拓展學(xué)生的知識(shí)面。

六、進(jìn)度安排。

教學(xué)內(nèi)容課時(shí)。

1.1正數(shù)和負(fù)數(shù)1課時(shí)。

1.2有理數(shù)4課時(shí)。

1.3有理數(shù)的加減法4課時(shí)。

1.4有理數(shù)的乘除法5課時(shí)。

1.5有理數(shù)的乘方3課時(shí)。

本章復(fù)習(xí)2課時(shí)。

2.1整式2課時(shí)。

2.2整式的加減3課時(shí)。

本章復(fù)習(xí)2課時(shí)。

3.2從古老的代數(shù)說起—一元一次方程的討論(1)4課時(shí)。

3.3從“買布問題”說起—一元一次方程的討論(2)4課時(shí)。

3.4再探實(shí)際問題和一元一次方程4課時(shí)。

本章復(fù)習(xí)2課時(shí)。

4.1多姿多彩的圖形4課時(shí)。

4.2直線、射線、線段2課時(shí)。

4.3角的度量3課時(shí)。

4.4角的比較和運(yùn)算3課時(shí)。

本章復(fù)習(xí)2課時(shí)。

七年級(jí)從算式到方程教案篇三

1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型。

3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來未知轉(zhuǎn)達(dá)化為已知的辯證思想。

1.列二元一次方程組解簡(jiǎn)單問題。

2.徹底理解題意

找等量關(guān)系列二元一次方程組。

1.怎樣設(shè)未知數(shù)?

2.找本題等量關(guān)系?從哪句話中找到的?

3.列方程組。

4.解方程組。

5.檢驗(yàn)寫答案。

思考:怎樣用一元一次方程求解?

比較用一元一次方程求解,用二元一次方程組求解誰更容易?

1.根據(jù)問題建立二元一次方程組。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

(3)已知關(guān)于求x、y的方程,

是二元一次方程。求a、b的值。

2.p38練習(xí)第1題。

小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?

p42。習(xí)題2.3a組第1題。

后記:

2.3二元一次方程組的應(yīng)用(2)

七年級(jí)從算式到方程教案篇四

這節(jié)課的內(nèi)容是一元一次方程第一課時(shí)。課后,我對(duì)本節(jié)課從四方面進(jìn)行了如下反思:

一:對(duì)選擇引例的反思。

在小學(xué)學(xué)生已接觸過方程,但沒有過多的研究。而本節(jié)課是一元一次方程的開篇課,它起著承上啟下的作用,通過這節(jié)課既要讓學(xué)生認(rèn)識(shí)到方程是更方便、更有力的數(shù)學(xué)工具,又要讓學(xué)生體驗(yàn)到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步,這些目標(biāo)的實(shí)現(xiàn)談何容易!課本上的例題雖然能很好的體現(xiàn)方程的優(yōu)越性,但難度較高。學(xué)生很少有利用方程解應(yīng)用題的經(jīng)歷,能否理解和接受?斟酌再三,還是放到后面再講。那么哪個(gè)題既簡(jiǎn)單又能明顯地承載著從算術(shù)到方程的進(jìn)步呢?幾乎翻閱了所有的有關(guān)資料,無獨(dú)有偶,在新課標(biāo)教案126頁的一道數(shù)學(xué)名題“啊哈,它的全部,它的一半,其和等于19?!弊屛已矍耙涣?,我為自己好不容易找到一個(gè)例題而興奮不已,立刻拿去和我們數(shù)學(xué)組經(jīng)驗(yàn)豐富的老教師交流一下我的想法,他們覺得這個(gè)例子倒挺好的,可是也提出了一個(gè)讓我深思的問題,這個(gè)題不是能夠很好地體現(xiàn)出從算術(shù)到方程的進(jìn)步,因?yàn)轭}很簡(jiǎn)單,方程的優(yōu)越性體現(xiàn)的不夠明顯。剛才的新奇和興奮迅速冷卻了下來,陳老師的一句話徹底點(diǎn)醒了我,如果實(shí)在找不到合適的例題,不妨就用這個(gè)題,通過這個(gè)題從語言和方法上突破它,可以先讓學(xué)生感知方程的優(yōu)越性,后面學(xué)習(xí)中再不斷地滲透方程的優(yōu)越性。聽完陳老師的一席見解,我頓時(shí)豁然開朗,增加了以這個(gè)題作為引例的信心。事實(shí)證明,這個(gè)引例既富有創(chuàng)新又能激發(fā)學(xué)生的興趣,既符合學(xué)生的已有經(jīng)驗(yàn)和知識(shí)水平,又符合學(xué)生的認(rèn)知規(guī)律。

二:對(duì)選題的反思。

我在備課中【活動(dòng)3】最初選用的題是:

修改后的題是:

判斷下列各式是方程的有:

(1)(2)(3)(4)(5)。

考慮到學(xué)生初對(duì)方程概念的研究,不在數(shù)字上人為的設(shè)置障礙,因?yàn)槭欠袷欠匠膛c數(shù)字的大小根本無關(guān),于是把數(shù)字全部統(tǒng)一成了6、2、8三個(gè)數(shù),利于學(xué)生從未知數(shù)和等號(hào)的角度進(jìn)一步理解方程的概念。最初選用的題數(shù)字太多,顯得題很多且條理性不強(qiáng),容易分散學(xué)生對(duì)概念本質(zhì)的把握。改進(jìn)后的題目更利于學(xué)生觀察方程的特征,從而更深刻地掌握概念的本質(zhì)。需要特別說明的是,如果說前5個(gè)小題是為了讓學(xué)生抓住方程的兩個(gè)要點(diǎn),那么后3個(gè)小題則是對(duì)概念本質(zhì)的提升,即:是否是方程與未知數(shù)所在的位置、未知數(shù)的個(gè)數(shù)、未知數(shù)的次數(shù)等均無關(guān)。

三:對(duì)課堂實(shí)踐的反思。

本節(jié)課的設(shè)計(jì)思路:首先以“名題欣賞”導(dǎo)入,引入概念,通過四組練習(xí)讓學(xué)生深刻理解方程和一元一次方程的概念,最后由學(xué)生自己歸納小結(jié)。

當(dāng)環(huán)節(jié)進(jìn)行到【活動(dòng)3】時(shí),我讓學(xué)生寫出一個(gè)或幾個(gè)方程,在給學(xué)生判斷點(diǎn)評(píng)時(shí),我發(fā)現(xiàn)學(xué)生在黑板上寫的全部都是未知數(shù)在等號(hào)左邊的方程,這時(shí)我突然意識(shí)到學(xué)生在模仿我前面呈現(xiàn)的方程,不禁暗自責(zé)怪自己考慮不周,怎么沒出一個(gè)等號(hào)兩邊都含有未知數(shù)的方程呢?它給我敲響了一個(gè)警鐘。正當(dāng)我想寫一個(gè)等號(hào)兩邊都含有未知數(shù)的方程來彌補(bǔ)設(shè)計(jì)上的不足時(shí),我忽然發(fā)現(xiàn)最后一排的一位男生已經(jīng)高高地舉起了手,他提出問題:“老師:等號(hào)兩邊都含有未知數(shù)的式子是不是方程,例如:2y-1=3y”?我為有學(xué)生能提出這樣的問題而感到慶幸,一是因?yàn)樗皶r(shí)彌補(bǔ)了我備課中的不足;二是由學(xué)生提出問題要比我提出問題更有價(jià)值。這可以反映出該生善于思考,同時(shí)也反映出了學(xué)生真實(shí)的疑惑。為了提高學(xué)生的探究能力,我并沒有急于解釋,而是把問題拋給學(xué)生,讓學(xué)生來解決。我立刻提出:“誰能解決這位同學(xué)提出的`問題呢?”這時(shí)我看到后面幾位學(xué)生已經(jīng)高高地舉起了手。我隨機(jī)點(diǎn)了一名學(xué)生,這位同學(xué)回答到:“判斷一個(gè)式子是不是方程只要看是否含有未知數(shù)和等號(hào)就ok了,與未知數(shù)的位置無關(guān)!”他精彩的回答引起聽課教師一陣喝彩!我也頓時(shí)驚喜萬分,他說的太好了,不管是語言表達(dá)還是準(zhǔn)確性上都無可挑剔。我為敢于給學(xué)生這樣一個(gè)機(jī)會(huì)又一次感到慶幸;通過這個(gè)同學(xué)精彩的回答,我深深地感受到:“教師給學(xué)生一個(gè)機(jī)會(huì),學(xué)生就會(huì)還你一個(gè)驚喜。”

四:教后整體反思。

成功之處:

1.引例、練習(xí)題的選擇都很恰當(dāng)。

2.思路清晰,重點(diǎn)突出,注意到了學(xué)生的自主探索,節(jié)奏把握較好。

3.數(shù)學(xué)文化的滲透比較自然。

4.“寫一個(gè)或幾個(gè)一元一次方程”此環(huán)節(jié)的設(shè)計(jì)體現(xiàn)了從理論到實(shí)踐的過程,使學(xué)生的能力得到提升,學(xué)習(xí)效果得到落實(shí)。

5.語言簡(jiǎn)練,教態(tài)大方,師生互動(dòng)比較熱烈,充分調(diào)動(dòng)了學(xué)生的積極性。

6.板書設(shè)計(jì)較為合理。本節(jié)課的主要內(nèi)容都以提煉的方式呈現(xiàn)出來。

不足之處:

1.在處理三道實(shí)際背景題時(shí)留給學(xué)生的思考時(shí)間偏少,顯得倉促。

2.在后面兩組題環(huán)節(jié)之間的過渡語言不是很自然。

3.授課語言仍需加強(qiáng)錘煉。

這節(jié)課的準(zhǔn)備和每個(gè)環(huán)節(jié)的設(shè)計(jì)我頗費(fèi)了一些心思,上完課之后總的感覺是達(dá)到了我預(yù)期的目標(biāo)。非常感謝評(píng)委組的老師們中懇的建議,以及同行們的肯定,這讓我受益匪淺。在今后的教學(xué)中,我將揚(yáng)長避短,力爭(zhēng)做的更好!

七年級(jí)從算式到方程教案篇五

1.教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn).

教學(xué)目標(biāo):

(1)了解方程的解的概念.

(2)體驗(yàn)對(duì)方程解的估算,會(huì)檢驗(yàn)一個(gè)數(shù)是不是某個(gè)一元方程的解.

(3)滲透對(duì)應(yīng)思想.

重點(diǎn):方程解的意義,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.

難點(diǎn):方程解的意義,會(huì)檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.

2.例、習(xí)題的意圖。

本節(jié)課重點(diǎn)是了解方程的解的意義.通過實(shí)際問題中對(duì)所列方程解的估算,了解什么是方程的解以及由于估算遇到了困難,產(chǎn)生尋求方程解法的需求,為后面的學(xué)習(xí)做好鋪墊.

例1是通過實(shí)際問題列出方程,根據(jù)(1)題未知數(shù)的取值范圍以及方程解的概念逐一代入方程來尋求方程的解,使學(xué)生親身體驗(yàn)什么是方程的解,也為例2檢驗(yàn)一個(gè)數(shù)值是不是方程的解做好鋪墊.對(duì)第(2)、(3)題再采用(1)題方法尋求方程的解已不容易,這又為后邊學(xué)習(xí)解方程奠定了積極的心理儲(chǔ)備.

例2是根據(jù)方程的解的意義,使學(xué)生會(huì)檢驗(yàn)一個(gè)數(shù)值是不是方程的解,這一點(diǎn)應(yīng)切實(shí)使學(xué)生掌握.

3.認(rèn)知難點(diǎn)與突破方法。

難點(diǎn)是方程解的意義和檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.例1起著承上啟下的作用,在估算方程解的過程中,理解方程解的意義,學(xué)會(huì)檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解.抓住關(guān)鍵字“等號(hào)左右兩邊相等”,檢驗(yàn)一個(gè)數(shù)是不是一個(gè)一元方程的解,要分別計(jì)算方程的左右兩邊,若其值相等,則這個(gè)未知數(shù)是方程的解,若不相等,則不是方程的解.

二、新課引入。

復(fù)習(xí):

1.什么是一元一次方程?

2.練習(xí):當(dāng),,時(shí),求式子的值.

答案:,,.

通過練習(xí)2強(qiáng)調(diào)求式子的值的一般步驟,其中易錯(cuò)易混的地方,如代入的值是負(fù)數(shù),應(yīng)加上括號(hào),數(shù)與數(shù)相乘時(shí)應(yīng)恢復(fù)乘號(hào),運(yùn)算關(guān)系不能混淆等.

三、例題講解。

例1教材p69中例1。

分析:三個(gè)題目中的相等關(guān)系分別是:

(1)計(jì)算機(jī)已使用的時(shí)間+繼續(xù)使用的時(shí)間=規(guī)定的檢修時(shí)間.

(2)2(長+寬)=周長.

(3)女生人數(shù)—男生人數(shù)=.

分析:方程中等號(hào)左邊有未知數(shù),估算的值代入方程應(yīng)使等號(hào)左邊的值等于等號(hào)右邊的值2450,這樣的值才適合方程.由于表示月份,是正整數(shù),不妨讓,,……分別代入方程算一算.

由計(jì)算結(jié)果可以看到,每一個(gè)的允許值都使代數(shù)式有一個(gè)確定的數(shù)值,為方便起見,可以列一個(gè)表格:

1234567…185021502300245026002750…從表中發(fā)現(xiàn):當(dāng)時(shí),的值是,也就是,當(dāng)時(shí),方程中等號(hào)的左邊:.等號(hào)的右邊:2450.由此得到方程的左邊=右邊,就說叫做方程的解,也就是方程中,未知數(shù)的值為5.所以,方程的解就是.

教材p71中的小云朵,可以多選幾個(gè)情況來說明,以加強(qiáng)對(duì)方程解得意義的理解.

從表中你還能發(fā)現(xiàn)哪個(gè)方程的解?(引導(dǎo)學(xué)生得出)如方程的解是;方程的解是等等,使學(xué)生進(jìn)一步體會(huì)方程解的概念.

方程解的意義:使方程中等號(hào)左右兩邊相等的未知數(shù)的值,叫做方程的解.

由于這兩個(gè)方程估算其解有一定的困難,數(shù)不整齊,或方程比較復(fù)雜,出現(xiàn)矛盾沖突,引導(dǎo)學(xué)生得出:學(xué)習(xí)解方程的方法十分必要.

怎樣檢驗(yàn)一個(gè)數(shù)是否是方程的解呢?

七年級(jí)從算式到方程教案篇六

1、這堂課從簡(jiǎn)單問題入手,由淺至深,比較符合初一學(xué)生的認(rèn)知性,學(xué)生了解了概念后馬上讓他們開啟自己的智慧大門,并讓學(xué)生自己找到符合概念的條件,加深印象。穿插式的練習(xí),讓學(xué)生能夠趁熱打鐵,更加熟練的掌握和理解一元一次方程的一些概念。在上課的過程中更重視的是學(xué)生的探索學(xué)習(xí),以及數(shù)學(xué)“建模”能力的培養(yǎng)。為后面學(xué)習(xí)打下基礎(chǔ)。

3、在課堂的第二個(gè)環(huán)節(jié)中,通過實(shí)際問題的'引入,讓學(xué)生動(dòng)起腦來,階梯型問題的設(shè)置使得一些后進(jìn)生也投入到課堂中來,體現(xiàn)了差異性的教學(xué)。在學(xué)生慢慢列出方程的同時(shí)其實(shí)也培養(yǎng)了他們的邏輯思維能力,也體會(huì)到了列方程它與算式相比較之下的優(yōu)點(diǎn),合作式的學(xué)生活動(dòng)增進(jìn)了學(xué)生的合作交流能力,我并通過一些激勵(lì)性的話語激發(fā)學(xué)生參與數(shù)學(xué)的興趣,在列完方程的最后讓學(xué)生歸納出列方程解應(yīng)用題的基本步驟。使學(xué)生加深對(duì)知識(shí)的掌握也培養(yǎng)了他們的語言組織能力以及學(xué)會(huì)標(biāo)準(zhǔn)的數(shù)學(xué)用語。

二、從教學(xué)方法反思。

本節(jié)課本著“尊重差異”為基礎(chǔ),先“引導(dǎo)發(fā)現(xiàn)”,后“講評(píng)點(diǎn)撥”,所以再講解前面概念的時(shí)候,我稍稍放慢速度讓后進(jìn)生聽的明白,因?yàn)榉匠淌墙鈶?yīng)用題的基礎(chǔ),抓住基礎(chǔ)知識(shí)再去發(fā)展他們的邏輯思維能力對(duì)后進(jìn)生是十分重要的。

三、從學(xué)生反饋反思。

這堂課學(xué)生能積極思考,認(rèn)真學(xué)習(xí),課后作業(yè)都能及時(shí)完成。作業(yè)質(zhì)量較好,但是對(duì)于稍難點(diǎn)的實(shí)際問題得列式還是有一些問題。在應(yīng)用題的列式方面是所有學(xué)生學(xué)習(xí)的一個(gè)難點(diǎn),這是我后面課堂要注意的地方:如何去教會(huì)學(xué)生找到數(shù)量關(guān)系去列方程。

七年級(jí)從算式到方程教案篇七

一。教學(xué)目標(biāo):

1.認(rèn)知目標(biāo):

2.能力目標(biāo):

1)滲透把實(shí)際問題抽象成數(shù)學(xué)模型的思想。

2)通過嘗試求解,培養(yǎng)學(xué)生的探索能力。

3.情感目標(biāo):

1)培養(yǎng)學(xué)生細(xì)致,認(rèn)真的學(xué)習(xí)習(xí)慣。

2)在積極的教學(xué)評(píng)價(jià)中,促進(jìn)師生的情感交流。

二。教學(xué)重難點(diǎn)。

難點(diǎn):用列表嘗試的方法求出方程組的解。

三。教學(xué)過程。

(一)創(chuàng)設(shè)情景,引入課題。

1.本班共有40人,請(qǐng)問能確定男_各幾人嗎?為什么?

(1)如果設(shè)本班男生x人,_y人,用方程如何表示?(x+y=40)。

(2)這是什么方程?根據(jù)什么?

2.男生比_多了2人。設(shè)男生x人,_y人。方程如何表示?x,y的值是多少?

3.本班男生比_多2人且男_共40人。設(shè)該班男生x人,_y人。方程如何表示?

兩個(gè)方程中的x表示什么?類似的兩個(gè)方程中的y都表示?

象這樣,同一個(gè)未知數(shù)表示相同的量,我們就應(yīng)用大括號(hào)把它們連起來組成一個(gè)方程組。

[設(shè)計(jì)意圖:從學(xué)生身邊取數(shù)據(jù),讓他們感受到生活中處處有數(shù)學(xué)]。

(二)探究新知,練習(xí)鞏固。

(1)請(qǐng)同學(xué)們看課本,了解二元一次方程組的的概念,并找出關(guān)鍵詞由教師板書。

[讓學(xué)生看書,引起他們對(duì)教材重視。找關(guān)鍵詞,加深他們對(duì)概念的了解。]。

x+y=3,x+y=200,。

2x-3=7,3x+4y=3。

y+z=5,x=y+10,。

2y+1=5,4x-y2=2。

學(xué)生作出判斷并要說明理由。

(1)由學(xué)生給出引例的答案,教師指出這就是此方程組的解。

(2)練習(xí):把下列各組數(shù)的題序填入圖中適當(dāng)?shù)奈恢茫?/p>

x=1;x=-2;x=;-x=。

y=0;y=2;y=1;y=。

方程x+y=0的解,方程2x+3y=2的解,方程組x+y=0的解。

2x+3y=2。

(3)既滿足第一個(gè)方程也滿足第二個(gè)方程的解叫作二元一次方程組的解。

(4)練習(xí):已知x=0是方程組x-b=y的解,求a,b的值。

y=0.55x+2a=2y。

(三)合作探索,嘗試求解。

現(xiàn)在我們一起來探索如何尋找方程組的解呢?

1.已知兩個(gè)整數(shù)x,y,試找出方程組3x+y=8的解。

2x+3y=10。

學(xué)生兩人一小組合作探索。并讓已經(jīng)找出方程組解的學(xué)生利用實(shí)物投影,講明自己的解題思路。

提煉方法:列表嘗試法。

一般思路:由一個(gè)方程取適當(dāng)?shù)膞y的值,代到另一個(gè)方程嘗試。

2.據(jù)了解,某商店出售兩種不同星號(hào)的“紅雙喜”牌乒乓球。其中“紅雙喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同學(xué)一共買了4盒,剛好有15個(gè)球。

(1)設(shè)該同學(xué)“紅雙喜”二星乒乓球買了x盒,三星乒乓球買了y盒,請(qǐng)根據(jù)問題中的條件列出關(guān)于x、y的方程組。(2)用列表嘗試的方法解出這個(gè)方程組的解。

由學(xué)生獨(dú)立完成,并分析講解。

(四)課堂小結(jié),布置作業(yè)。

1.這節(jié)課學(xué)哪些知識(shí)和方法?(二元一次方程組及解概念,列表嘗試法)。

2.你還有什么問題或想法需要和大家交流?

3.作業(yè)本。

教學(xué)設(shè)計(jì)說明:

1.本課設(shè)計(jì)主線有兩條。其一是知識(shí)線,內(nèi)容從二元一次方程組的概念到二元一次方程組解的概念再到列表嘗試法,環(huán)環(huán)相扣,層層遞進(jìn);第二是能力培養(yǎng)線,學(xué)生從看書理解二元一次方程組的概念到學(xué)會(huì)歸納解的概念,再到自主探索,用列表嘗試法解題,循序漸進(jìn),逐步提高。

2.“讓學(xué)生成為課堂的真正主體”是本課設(shè)計(jì)的主要理念。由學(xué)生給出數(shù)據(jù),得出結(jié)果,再讓他們?cè)诜e極嘗試后進(jìn)行講解,實(shí)現(xiàn)生生互評(píng)。把課堂的一切交給學(xué)生,相信他們能在已有的知識(shí)上進(jìn)一步學(xué)習(xí)提高,教師只是點(diǎn)播和引導(dǎo)者。

3.本課在設(shè)計(jì)時(shí)對(duì)教材也進(jìn)行了適當(dāng)改動(dòng)。例題方面考慮到數(shù)_時(shí)代,學(xué)生對(duì)膠卷已漸失興趣,所以改為學(xué)生比較熟悉的乒乓球?yàn)轶w裁。另一方面,充分挖掘練習(xí)的作用,為知識(shí)的落實(shí)打下軋實(shí)的基礎(chǔ),為學(xué)生今后的進(jìn)一步學(xué)習(xí)做好鋪墊。

七年級(jí)從算式到方程教案篇八

本課內(nèi)容是在學(xué)生掌握了二元一次方程組有關(guān)概念之后的學(xué)習(xí)內(nèi)容,用代入消元法解二元一次方程組是學(xué)生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學(xué)習(xí)本章的重點(diǎn)和難點(diǎn)。學(xué)完以后可以幫助我們解決一些實(shí)際的問題,也是為了今后學(xué)習(xí)函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

2、理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過程,體會(huì)化歸思想。

2、難點(diǎn):在“消元”的過程中能夠判斷消去哪個(gè)未知數(shù),使得解方程組的運(yùn)算轉(zhuǎn)為較簡(jiǎn)便的過程。

(1)復(fù)習(xí)引入。

設(shè)計(jì)意圖:讓學(xué)生復(fù)習(xí)鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個(gè)拋磚引玉的效果,激起學(xué)生的學(xué)習(xí)興趣,引出課題。

(2)探究新知。

此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點(diǎn)擊暫停,先讓學(xué)生考慮想清楚兩個(gè)問題。

一個(gè)問題是為什么能用一元一次方程解決的實(shí)際問題我們要用二元一次方程組來解決?第二個(gè)問題觀察二元一次方程組和一元一次方程組之間有何異同?學(xué)生想清楚這兩個(gè)問題后,滲透消元的思想,然后繼續(xù)播放視頻讓學(xué)生知道二元一次方程組完整的解題過程,并在每一步做出相應(yīng)的`解釋,怎么變化而來。

播放視頻完后先讓學(xué)生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導(dǎo)總結(jié)。接著完成配套的3個(gè)習(xí)題,強(qiáng)化訓(xùn)練。

(3)例題講解。

讓學(xué)生嘗試解答。

設(shè)計(jì)意圖:讓學(xué)生通過例1和例2的對(duì)比,引出如何選擇變化有利于計(jì)算的問題。

預(yù)想大部分學(xué)生例2會(huì)存在這樣的問題到底選擇哪個(gè)方程變形,當(dāng)學(xué)生做出例1,猶豫例2時(shí),提出這樣兩個(gè)問題:

(1)在解二元一次方程組的步驟中變形的過程我們應(yīng)當(dāng)如何變形?把一個(gè)方程變形為用含x的式子表示y(或含y的式子表示x)。

(2)選擇哪個(gè)方程變形比較簡(jiǎn)便呢?

再一次激起學(xué)生的學(xué)習(xí)興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,讓學(xué)生清楚的知道在不同的二元一次方程組中在變形的過程選擇那一個(gè)方程,選擇那一個(gè)未知數(shù)變形能簡(jiǎn)便的進(jìn)行運(yùn)算。

1、這節(jié)課你學(xué)到了哪些知識(shí)和方法?

2、你還有什么問題或想法需要和大家交流分享?

xxx。

通過洋蔥視頻輔助教學(xué),使得學(xué)生容易體會(huì)到“消元”思想的滲透,學(xué)生能夠?qū)W會(huì)規(guī)范解題。通過視頻的講解能夠準(zhǔn)確的選擇要變形的方程,如果是傳統(tǒng)的教學(xué)方式可能會(huì)出現(xiàn)很多學(xué)生不理解的地方,但通過洋蔥數(shù)學(xué)短小精辟的視頻講解一下子讓學(xué)生理解透!

七年級(jí)從算式到方程教案篇九

【過程與方法】。

先運(yùn)用實(shí)際問題引入三元一次方程組的概念,再類比解二元一次方程組的思想方法,學(xué)習(xí)三元一次方程組的解法,最后學(xué)習(xí)三元一次方程組應(yīng)用題.

【情感態(tài)度】。

讓學(xué)生學(xué)會(huì)“舉一反三”的學(xué)習(xí)方法,體會(huì)數(shù)學(xué)的魅力.

【教學(xué)重點(diǎn)】。

一、情境導(dǎo)入,初步認(rèn)識(shí)。

問題1小明手頭有12張面額分別為1元、2元、5元的紙幣,共計(jì)22元,其中1元紙幣的數(shù)量是2元紙幣數(shù)量的4倍.求1元、2元、5元紙幣各多少張.

七年級(jí)從算式到方程教案篇十

(2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。

(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神。

(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力。

(1)二元一次方程和一次函數(shù)的關(guān)系;

(2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系。

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí)。

教具:多媒體課件、三角板。

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙。

第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識(shí))。

內(nèi)容:

1、方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?

2、點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3、在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

4、以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):

(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。

內(nèi)容:

1、解方程組。

2、上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像。

(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);

(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解。

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組。

第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點(diǎn)坐標(biāo)是。

第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。

內(nèi)容:

1、已知一次函數(shù)與的圖像的交點(diǎn)為,則。

2、已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為()。

(a)4(b)5(c)6(d)7。

3、求兩條直線與和軸所圍成的三角形面積。

4、如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。

內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

1、二元一次方程和一次函數(shù)的圖像的關(guān)系;

(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程。

2、方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;

(1)代入消元法;

(2)加減消元法;

(3)圖像法,要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解。

第六環(huán)節(jié)作業(yè)布置。

習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

附:板書設(shè)計(jì)。

六、教學(xué)反思。

七年級(jí)從算式到方程教案篇十一

問題:(投影)。

一個(gè)農(nóng)民有若干只雞和兔子,它們共有50個(gè)頭和140只腳,問雞和兔子各多少只?

先讓學(xué)生思考一下,自己做出解答,教師巡視.最后,在學(xué)生動(dòng)手動(dòng)腦的基礎(chǔ)上,教師引導(dǎo)給出各種解法.

解法一:在分析時(shí),可提出如下問題:

1.50只動(dòng)物都是雞,對(duì)嗎?

(不對(duì),因?yàn)?0只雞有100只腳,腳數(shù)少了.)。

2.50只動(dòng)物都是兔子對(duì)嗎?

(不對(duì),因?yàn)?0只兔子共有200只腳,腳數(shù)多了.)。

3.一半是雞,一半是兔子對(duì)嗎?

(不對(duì),因?yàn)?5只雞,25只兔共有150只腳,多10只腳.)。

怎么辦?(在學(xué)生思考后,教師指出:我們可采取逐步調(diào)整,驗(yàn)算的方法來加以解決.)。

4.若增加一只雞,減少一只兔,那么動(dòng)物總只數(shù),腳數(shù)分別怎樣變化?

(當(dāng)增加一只雞,減少一只兔時(shí),動(dòng)物的總只數(shù)不變,腳數(shù)比原來少兩只.)。

5.現(xiàn)在你是否知道有幾只雞、幾只兔?

(若學(xué)生回答還是感到困難,教師應(yīng)引導(dǎo)學(xué)生根據(jù)一半是雞,一半是兔時(shí)多10只腳,做出5次如問題4所述的方法進(jìn)行調(diào)整,即增加5只雞,減少5只兔,則多出的10只腳就沒有了,故答案是30只雞、20只兔.)。

此時(shí),教師指出:這個(gè)問題是解決了,但它在很大程度上依賴于數(shù)字50和140比較小,比較簡(jiǎn)單,若它們相當(dāng)大且又很復(fù)雜,那么像上述方法這樣一次次的試算就很麻煩了.然后提出問題:是否有其他方法來解決這個(gè)問題呢?(若學(xué)生在思考后,還很茫然,則教師引導(dǎo)學(xué)生嘗試可否用一元一次方程來解.由一名學(xué)生板演,其余學(xué)生自行完成)。

解法二:設(shè)有x只雞,則有(50-x)只兔.根據(jù)題意,得2x+4(50-x)=140.

(解方程略)。

追問:對(duì)于上面的問題用一元一次方程可解,是否還有其他方法可解?(若學(xué)生想不到,教師可引導(dǎo)學(xué)生注意,要求的是兩個(gè)未知數(shù),能否設(shè)兩個(gè)未知數(shù)列方程求解呢?讓學(xué)生自己設(shè)未知數(shù),列方程.然后請(qǐng)一名學(xué)生板演解所列的方程.)。

七年級(jí)從算式到方程教案篇十二

(2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力.

(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.

(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力.

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).

教具:多媒體課件、三角板.

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問題回顧知識(shí))。

內(nèi)容:1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?

2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):

(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;。

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。

內(nèi)容:1.解方程組。

2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像.

(1)求二元一次方程組的.解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);。

(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.

第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點(diǎn)坐標(biāo)是.

第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。

內(nèi)容:1.已知一次函數(shù)與的圖像的交點(diǎn)為,則.

2.已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為().

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積.

4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。

內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;。

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);。

(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;。

(1)代入消元法;。

(2)加減消元法;。

(3)圖像法.要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.

第六環(huán)節(jié)作業(yè)布置。

習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

附:板書設(shè)計(jì)。

六、教學(xué)反思。

七年級(jí)從算式到方程教案篇十三

(二)教材的重難點(diǎn)。

(一)知識(shí)技能目標(biāo)。

1.目標(biāo)內(nèi)容。

(2)培養(yǎng)學(xué)生建立方程模型來分析、解決實(shí)際問題的能力以及探索精神、合作意識(shí).。

2.目標(biāo)分析。

(二)過程目標(biāo)。

1.目標(biāo)內(nèi)容。

在活動(dòng)中感受方程思想在數(shù)學(xué)中的作用,進(jìn)一步增強(qiáng)應(yīng)用意識(shí).。

2.目標(biāo)分析。

(三)情感目標(biāo)。

1.目標(biāo)內(nèi)容。

2.目標(biāo)分析。

七年級(jí)從算式到方程教案篇十四

1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型2017年-2017學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)2017年-2017學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)。

3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來未知轉(zhuǎn)達(dá)化為已知的辯證思想。

2.徹底理解題意。

1.怎樣設(shè)未知數(shù)?

2.找本題等量關(guān)系?從哪句話中找到的?

3.列方程組。

4.解方程組。

5.檢驗(yàn)寫答案。

思考:怎樣用一元一次方程求解?

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

(3)已知關(guān)于求x、y的方程,

2.p38練習(xí)第1題。

p42。習(xí)題2.3a組第1題。

后記:

七年級(jí)從算式到方程教案篇十五

2、掌握等式的性質(zhì),理解掌握移項(xiàng)法則。

3、會(huì)用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。

5、初步學(xué)會(huì)用方程的思想思考問題和解決問題的一些基本方法,學(xué)會(huì)用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實(shí)情境中的實(shí)際問題。

難點(diǎn)重點(diǎn):解方程、用方程解決實(shí)際問題。

難點(diǎn):用方程解決實(shí)際問題。

師生活動(dòng)時(shí)間復(fù)備標(biāo)注。

二、典例回顧。

(1)。x=5(2)。x2+3x=2(3)。2x+3y=5。

判斷下列x值是否為方程3x-5=6x+4的解。

(1)。x=3(2)x=3。

4、解決問題的基本步驟。

解:設(shè)先安排x人工作4小時(shí)。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:

去分母,得4x+8(x+2)=40。

去括號(hào),得4x+8x+16=40。

移項(xiàng)及合并,得12x=24。

系數(shù)化為1,得x=2。

答:應(yīng)先安排2名工人工作4小時(shí)。

注意:工作量=人均效率人數(shù)時(shí)間。

本題的關(guān)鍵是要人均效率與人數(shù)和時(shí)間之間的數(shù)量關(guān)系。

三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題。

四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8。

五、達(dá)標(biāo)訓(xùn)練:3.7。

課件出示問題明確知識(shí)要點(diǎn)。

學(xué)生練習(xí)基礎(chǔ)上,教師點(diǎn)撥。

七年級(jí)從算式到方程教案篇十六

2.在對(duì)實(shí)際問題情景的分析過程中感受方程模型的意義。

二、自主學(xué)習(xí)。

1、請(qǐng)同學(xué)們閱讀p79至p80第4段,然后用算術(shù)方法解此問題,列算式為___________;然后用設(shè)未知數(shù)列方程的數(shù)學(xué)思想來解決此問題,設(shè)王家莊到翠湖的路程為千米,可列方程為:

像上面含有未知數(shù)的等式,叫__________(讀三遍)。

2、自學(xué)p80例1至p81歸納部分,根據(jù)下列問題,設(shè)未知數(shù)并列出方程.

(1)用一根長20cm的鐵絲圍成一個(gè)正方形,正方形的邊長是多少?

分析:設(shè)正方形的邊長為(cm),那么周長為__________(cm),列方程:__________.

(2)某校女生占全體學(xué)生數(shù)的61℅,比男生多61個(gè),這個(gè)學(xué)校有學(xué)生多少個(gè)?

(3)一臺(tái)計(jì)算機(jī)已使用1200小時(shí),預(yù)計(jì)每月再使用123小時(shí),經(jīng)過多少月這臺(tái)計(jì)算機(jī)的使用時(shí)間達(dá)到規(guī)定的檢修時(shí)間2612小時(shí)?(自主分析并列出方程)。

像上面(1)、(2)、(3)所列的方程,只含有一個(gè)__________數(shù),并且未知數(shù)的次數(shù)都是__________,這樣的方程叫做__________元__________次方程(讀三遍)。

注意:“一元”是指一個(gè)未知數(shù);“一次”是指未知數(shù)的指數(shù)是一次(理解)。

上面的分析過程歸納如下:

(1)分析實(shí)際問題中的__________關(guān)系,利用__________關(guān)系列出方程(一元一次方程),是用數(shù)學(xué)解決實(shí)際問題的一種方法。

(2)列方程經(jīng)歷的幾個(gè)步驟。

a、設(shè)__________數(shù);b、找出題中的__________關(guān)系;c、列出含有未知數(shù)的等式——()。

3、閱讀p81,理解列方程是解決實(shí)際問題的一種重要方法,利用方程可以求出未知數(shù)。

當(dāng)=6時(shí),4值是24。這時(shí),方程4=24等號(hào)左右兩邊相等,所以=6,叫做方程4=24的解;同樣,當(dāng)x=10時(shí),2x+3=23,這時(shí)方程2x+3=23等號(hào)兩邊_______相等,所以,x=10叫做方程2x+3=23的_______;像這樣,解方程就是求出使方程中等號(hào)左右兩邊_______的未知數(shù)的值,這個(gè)值就是方程的_______(讀三遍)。

思考:x=4與x=3中,哪一個(gè)是方程7x+1=15的解?答:_______。

七年級(jí)從算式到方程教案篇十七

1、會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

2、知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型。

3、引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來未知轉(zhuǎn)達(dá)化為已知的辯證思想。

教學(xué)重點(diǎn)。

2、徹底理解題意。

教學(xué)難點(diǎn)。

教學(xué)過程。

一、情境引入。

二、建立模型。

1、怎樣設(shè)未知數(shù)?

2、找本題等量關(guān)系?從哪句話中找到的?

3、列方程組。

4、解方程組。

5、檢驗(yàn)寫答案。

三、練習(xí)。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

(3)已知關(guān)于求x、y的方程,

2、p38練習(xí)第1題。

四、小結(jié)。

小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?

五、作業(yè)。

p42習(xí)題2.3a組第1題。

后記:

七年級(jí)從算式到方程教案篇十八

5.雅安地震發(fā)生后,全國人民抗震救災(zāi),眾志成城,在地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)。

車型甲乙丙。

汽車運(yùn)載量(噸/輛)5810。

汽車運(yùn)費(fèi)(元/輛)400500600。

(1)全部物資可用甲型車8輛,乙型車5輛,丙型車輛來運(yùn)送.

【本文地址:http://aiweibaby.com/zuowen/9447833.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔