教案的編寫需要充分考慮教學環(huán)境和資源的條件,合理安排教學時間和課堂活動。教案要根據(jù)教學目標合理選擇教學方法,包括講授、討論、實驗、展示等多種形式。針對不同的教學需求,我們?yōu)榇蠹覝蕚淞艘恍嵱玫慕贪改0?,希望能幫到大家?/p>
二元一次方程與一次函數(shù)教案篇一
3、學會開放性地尋求設計方案,培養(yǎng)分析。
教學難點用方程組刻畫和解決實際問題的過程。
知識重點經(jīng)歷和體驗用方程組解決實際問題的過程。
教學過程(師生活動)設計理念。
(出示問題)據(jù)以往的統(tǒng)計資料,甲、乙兩種作物的單位面積產(chǎn)量的比是1:1:5,現(xiàn)要在一塊長200m,寬100m的長方形土地上種植這兩種作物,怎樣把這塊地分為兩個長方形,使甲、乙兩種作物的總產(chǎn)量的比是3:4(結果取整數(shù))?以學生身邊的實際問題展開學習,突出數(shù)學與現(xiàn)實的聯(lián)系,培養(yǎng)學生用數(shù)學的意識。
探索分析。
研究策略以上問題有哪些解法?
學生自主探索,合作交流,整理思路:
(2)先求兩個小長方形的面積比,再計算分割線的位置.。
(3)設未知數(shù),列方程組求解.。
……。
學生經(jīng)討論后發(fā)現(xiàn)列方程組求解較為方便.多角度分析問題,多策略解決問題,提高思維的發(fā)散性。
合作交流。
解決問題引導學生回顧列方程解決實際問題的基本思路。
(1)設未知數(shù)。
(2)找相等關系。
(3)列方程組。
(4)檢驗并作答。
解這個方程組得。
過長方形土地的長邊上離一端約106m處,把這塊地分。
為兩個長方形.較大一塊地種甲作物,較小一塊地種乙作物.。
你還能設計別的種植方案嗎?
用類似的方法,可沿平行于線段ab的方向分割長。
方形.。
教師巡視、指導,師生共同講評.。
比較分析,加深對方程組的認識。
畫圖,數(shù)形結合,輔助學生分析。
進一步滲透模型化的思想。
引發(fā)學生思考,尋求解決途徑。
拓展探究。
按以下步驟展開問題的討論:
(l)學生獨立思考,構建數(shù)學模型.。
(2)小組討論達成共識.。
(3)學生板書講解.。
(4)對方程組的解進行探究和討論,從而得到實際問題的結果.。
(5)針對以上結論,你能再提出幾個探索性問題嗎?以學生學習生活中遇到的。
問題展開討論,鞏固用二元一次。
小結與作業(yè)。
小結提高提問:通過本節(jié)課的討論,你對用方程解決實際的方法又有何新的`認識?
學生思考后回答、整理.。
布置作業(yè)12、必做題:教科書116頁習題8.3第1(2)、4題。
13、選做題:教科書117頁習題8.3第7題。
14、備15、選題:
(3)解方程組。
小彬看見了,說:“我來試一試.”結果小彬七拼八湊,拼成如圖2那樣的正方形.咳,怎么中間還留下一個洞,恰好是邊長2mm的小正方形!
你能幫他們解開其中的奧秘嗎?
提示學生先動手實踐,再分析討論.。
分層次布1作業(yè).其中“必。
做題”面向全體學生,鞏固知識、
方法,加深理解廠選做題”面向。
部分學有余力的學生,給他們一。
定的時間和空間,相互合作,自主探究,增強實踐能力.備選通供教師參考.。
本課教育評注(課堂設計理念,實際教學效果及改進設想)。
本課所提供的例題、練習題、作業(yè)題突出體現(xiàn)以下特點:
2、探索性.問題解決的策略不易獲得,問題中的數(shù)量關系不易發(fā)現(xiàn),問題中的未知數(shù)不。
易設定,這為學生開展探究活動提供了機會.。
二元一次方程與一次函數(shù)教案篇二
一、學生起點分析:
學生的知識技能基礎:學生能夠正確解方程(組),初步掌握了一次函數(shù)及其圖像的基礎知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結合的數(shù)學思想也有所接觸。
學生的活動經(jīng)驗基礎:學生能夠根據(jù)已知條件準確畫出一次函數(shù)圖象,能夠認識和接受函數(shù)解析式與二元一次方程之間的互相轉(zhuǎn)換.在過去已有經(jīng)驗基礎上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認識,有小組合作學習經(jīng)驗.
二、學習任務分析:
本節(jié)課的主要內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應用.通過探索“方程”與“函數(shù)圖像”的關系,培養(yǎng)學生數(shù)學轉(zhuǎn)化的思想,通過學習二元一次方程方程組的解與直線交點坐標之間的關系,使學生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應關系,進一步培養(yǎng)了學生數(shù)形結合的意識和能力.因此確定本節(jié)課的教學目標為:
2.掌握二元一次方程組和對應的兩條直線之間的關系;。
3.發(fā)展學生數(shù)形結合的意識和能力,使學生在自主探索中學會不同數(shù)學知識間可以互相轉(zhuǎn)化的數(shù)學思想和方法.
教學重點。
教學難點。
數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識.
四、教法學法。
1.教法學法。
啟發(fā)引導與自主探索相結合.
2.課前準備。
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
五、教學過程。
本節(jié)課設計了六個教學環(huán)節(jié):第一環(huán)節(jié)設置問題情境,啟發(fā)引導;第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習;第五環(huán)節(jié)課堂小結;第六環(huán)節(jié)作業(yè)布置.
二元一次方程與一次函數(shù)教案篇三
二元一次方程組是新人教版七年級數(shù)學(下)第八章第一節(jié)的內(nèi)容。在此之前,學生已學習了一元一次方程,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容主要學習和二元一次方程組有關的四個概念。本節(jié)內(nèi)容既是前面知識的深化和應用,又是今后用二元一次方程組解決生活中的實際問題的預備知識,占據(jù)重要的地位,是學生新的方程建模的基礎課,為今后學習一次函數(shù)以及其他學科(如:物理)的學習奠定基礎,同時建模的思想方法對學生今后的發(fā)展有引導作用,因此本節(jié)課具有承上啟下的作用。
2.教學目標。
[知識技能]。
掌握二元一次方程、二元一次方程組及它們的解的概念,通過實例認識二元一次方程和二元一次方程組也是反映數(shù)量關系的重要數(shù)學模型。
[數(shù)學思考]。
體會實際問題中二元一次方程組是反映現(xiàn)實世界多個量之間相等關系的一種有效的數(shù)學模型,能感受二元一次方程(組)的重要作用。
[解決問題]。
通過對本節(jié)知識點的學習,提高分析問題、解決問題和邏輯思維能力。
[情感態(tài)度]。
引導學生對情境問題的觀察、思考,激發(fā)學生的好奇心和求知欲,并在運用數(shù)學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。
3.教學重點與難點。
按照《課程標準》的要求,根據(jù)上述地位與作用的分析及教學目標,本節(jié)課中相關概念的掌握是教學重點。
七年級學生思維活躍,好奇心強,希望平等交流研討,厭煩空洞的說教。因此,在教學過程中,積極采用形象生動、形式多樣的教學方法和學生廣泛的、積極主動參與的學習方式,激發(fā)他們的興趣。一方面通過學案與課件,使他們的注意力始終集中在課堂上;另一方面創(chuàng)造條件和機會,讓學生自主練習,合作交流,培養(yǎng)學生學習的主動性、與人合作的精神,激發(fā)學生的興趣和求知欲,感受成功的樂趣。
1.教法。
數(shù)學課程標準明確指出:有效的數(shù)學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學生學習數(shù)學的重要方式。所以我在教學中不只傳授知識,更要激發(fā)學生的創(chuàng)造思維,引導學生探究,發(fā)現(xiàn)結論的方法。正所謂“教是為了不教”。所以我采用引導發(fā)現(xiàn)法為主,情景問答法、討論法、活動競賽法、利用多媒體課件輔助教學等完成本節(jié)的教學,真正做到教師的主導地位。
2.學法。
學生是學習的主體,所以本節(jié)教學中,引導學生自主探究、歸納總結,運用自主探索與合作交流開拓自己的創(chuàng)造思維。這樣調(diào)動學生的積極性,激發(fā)學生興趣,使學生由被動學習變?yōu)榉e極主動的探究,這也符合數(shù)學的直觀性和形象性。
為了達到本節(jié)課的教學目標,突出重點,突破難點,我把教學過程設計為五個環(huán)節(jié):
1、創(chuàng)設情境,引入概念。
nba籃球聯(lián)賽情景再現(xiàn),利用世界男籃亞裔球星林書豪激勵學生相信自已能夠創(chuàng)造奇跡的勵志教育,感受數(shù)學來源于生活,調(diào)動學生順利引入新課。
2、觀察歸納,形成概念。
概念的教學,不糾纏于其語言本身,而是通過類比整合形成新的概念。由于學生對一元一次方程概念已經(jīng)很了解,我主要采用了類比的方法,弱化概念的教學,強化對概念的正確理解,通過學案與課件相結合的方式,以題組形式分層漸進式訓練,讓學生明晰概念,鞏固概念,強化概念,提升能力。
3、拓展延伸,深入概念。
知識的掌握,能力的提升是一個不斷循序上升的過程,而教學過程更是一個生動活沷,主動和富有個性的過程,讓學生認真聽講、積極思考,動腦動口,自主探索,合作交流。
4、當堂檢測,強化概念。
通過課堂隨機選題的形式答題,通過合作小組交流,全班展示交流,使學生互相學習、互相促進、互相競爭,將小組的認知成果轉(zhuǎn)化為全班同學的共同認知成果,從而營造寬松、民主、競爭、快樂的學習氛圍,讓學生體驗到學習的快樂,成功的喜悅,從而充分體現(xiàn)數(shù)學教學主要是學生數(shù)學活動教學的基本理念。
5、反思小結,回歸概念。
知識性內(nèi)容的小結,可把課堂教學傳授的知識盡快化為學生的素質(zhì);數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,培養(yǎng)學生形成完整的知識體系,養(yǎng)成及時反思的習慣。
美國國家研究委員會在《人人關心數(shù)學教育的未來》的報告中指出“沒有一個人能教好數(shù)學,好的教師不是在教數(shù)學,而是在激發(fā)學生自已去學數(shù)學”。只有學生通過自已的思考建立對數(shù)學的理解力,才能真正的學好數(shù)學。本節(jié)課,我致力于讓學生自已去發(fā)現(xiàn)數(shù)學,研究數(shù)學,加強數(shù)學思想、方法及科學研究方法的指導,引導學生不斷從“學會數(shù)學”到“會學數(shù)學”,但教無止境,課堂仍然留有遺憾,在今后的教學中,我將從這樣的三個方面加強對課堂的研究:一是加強對學法研究、學情研究,讓教學方式與內(nèi)容更符合學生認知規(guī)律,更貼近學生實際;二是重視學生課堂的學習感受,營造民主、開放、合作、競爭的學習氛圍;;三是提高教學機智、不斷創(chuàng)新優(yōu)化教學方法,科學、合理、靈活地處理課堂上生成的問題。
二元一次方程與一次函數(shù)教案篇四
本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應用。通過探索方程與函數(shù)圖像的關系,培養(yǎng)學生數(shù)學轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應關系,進一步培養(yǎng)了學生數(shù)形結合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標為二元一次方程組的近似解,要得到準確的結果,應從圖像中獲取信息,確立直線對應的函數(shù)表達式即方程,再聯(lián)立方程應用代數(shù)方法求解,其結果才是準確的。
二、學情分析。
學生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學習本節(jié)知識困難不大,關鍵是讓學生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學生進一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決。
三、目標分析。
1、教學目標。
知識與技能目標。
(1)初步理解二元一次方程和一次函數(shù)的關系;
(2)掌握二元一次方程組和對應的兩條直線之間的關系;
過程與方法目標。
(2)通過做一做引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力。
(3)情感與態(tài)度目標。
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神。
(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力。
2。教學重點。
(1)二元一次方程和一次函數(shù)的關系;
(2)二元一次方程組和對應的兩條直線的關系。
3。教學難點。
數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識。
四、教法學法。
1、教法學法。
啟發(fā)引導與自主探索相結合。
2、課前準備。
教具:多媒體課件、三角板。
學具:鉛筆、直尺、練習本、坐標紙。
五、教學過程。
本節(jié)課設計了六個教學環(huán)節(jié):第一環(huán)節(jié)設置問題情境,啟發(fā)引導;第二環(huán)節(jié)自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習;第五環(huán)節(jié)課堂小結;第六環(huán)節(jié)作業(yè)布置。
第一環(huán)節(jié):設置問題情境,啟發(fā)引導。
內(nèi)容:1、方程x+y=5的解有多少個?是這個方程的解嗎?
2、點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3、在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4、以方程x+y=5的解為坐標的`所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數(shù)的圖像有如下關系:
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
意圖:通過設置問題情景,讓學生感受方程x+y=5和一次函數(shù)y=相互轉(zhuǎn)化,啟發(fā)引導學生總結二元一次方程與一次函數(shù)的對應關系。
效果:以問題串的形式,啟發(fā)引導學生探索知識的形成過程,培養(yǎng)了學生數(shù)學轉(zhuǎn)化的思想意識。
前面研究了一個二元一次方程和相應的一個一次函數(shù)的關系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應的兩個一次函數(shù)的關系。順其自然進入下一環(huán)節(jié)。
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關系。
內(nèi)容:
1、解方程組。
2、上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像。
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;
(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解。
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種。
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組。
意圖:通過自主探索,使學生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應關系,為求兩條直線的交點坐標打下基礎。
效果:由學生自主學習,十分自然地建立了數(shù)形結合的意識,學生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學生的創(chuàng)新意識和變式能力。
第三環(huán)節(jié)典型例題。
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是。
意圖:設計例1進一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解。通過例2,讓學生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應的函數(shù)表達式,把形的問題轉(zhuǎn)化成數(shù)來處理。這兩例充分展示了數(shù)形結合的思想方法,為下一課時解決實際問題作了很好的鋪墊。
效果:進一步培養(yǎng)了學生數(shù)形結合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。
第四環(huán)節(jié)反饋練習。
內(nèi)容:
1、已知一次函數(shù)與的圖像的交點為,則。
2、已知一次函數(shù)與的圖像都經(jīng)過點a(2,0),且與軸分別交于b,c兩點,則的面積為()。
(a)4(b)5(c)6(d)7。
3、求兩條直線與和軸所圍成的三角形面積。
4、如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
意圖:4個練習,意在及時檢測學生對本節(jié)知識的掌握情況。
效果:加深了兩條直線交點的坐標就是對應的函數(shù)表達式所組成的方程組的解的印象,培養(yǎng)了學生的計算能力和數(shù)學轉(zhuǎn)化的能力,使學生進一步領悟到應用數(shù)形結合的思想方法解題的重要性。
第五環(huán)節(jié)課堂小結。
內(nèi)容:以問題串的形式,要求學生自主總結有關知識、方法:
1、二元一次方程和一次函數(shù)的圖像的關系;
(1)以二元一次方程的解為坐標的點都在相應的函數(shù)圖像上;
2、方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;
(2)兩條直線的交點坐標是對應的方程組的解;
(1)代入消元法;
(2)加減消元法;
(3)圖像法。要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解。
意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結構化,只有結構化的知識才能形成能力;使學生進一步明確學什么,學了有什么用。
第六環(huán)節(jié)作業(yè)布置。
習題7。7。
附:板書設計。
六、教學反思。
本節(jié)課在學生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎上,通過教師啟發(fā)引導和學生自主學習探索相結合的方法,進一步揭示了二元一次方程和函數(shù)圖像之間的對應關系,從而引出了二元一次方程組的圖像解法,以及應用代數(shù)方法解決有關圖像問題,培養(yǎng)了學生數(shù)形結合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化。教學過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準確性,所求的解往往是近似解。因此為了準確地解決有關圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習中的4個問題。
二元一次方程與一次函數(shù)教案篇五
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.
【能力目標】通過學生的思考和操作,在力圖提示出方程與圖象之間的關系,引入二元一次方程組圖象解法,同時培養(yǎng)了學生初步的數(shù)形結合的意識和能力.
【情感目標】通過學生的自主探索,提示出方程和圖象之間的對應關系,加強了新舊知識的聯(lián)系,培養(yǎng)了學生的創(chuàng)新意識,激發(fā)了學生學習數(shù)學的興趣.
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
【教學難點】方程和函數(shù)之間的對應關系即數(shù)形結合的意識和能力。
二元一次方程與一次函數(shù)教案篇六
知識技能:理解一次函數(shù)與二元一次方程(組)的關系,會用圖象法解二元一次方程組。
情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信心。
教學重難點。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
教學過程。
(一)引入新課。
學生已經(jīng)學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
(二)進行新課。
(3)是否直線上任意一點的坐標都是它所對應的二元一次方程的解?
此時教師留給學生充分探索交流的時間與空間,對學生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。
進一步歸納出:從數(shù)的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。
3、列一元二次不等式。
解法1:設上網(wǎng)時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標,結合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式a省錢;當上網(wǎng)時間等于400分時,選擇方式a、b沒有區(qū)別;當上網(wǎng)時間多于400分時,選擇方式b省錢。
解法2:設上網(wǎng)時間為分,方式b與方式a兩種計費的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計算出直線與軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數(shù)圖象都是射線。
4、習題。
(1)、以方程的解為坐標的所有點都在一次函數(shù)_____的圖象上。
(2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個交點,且交點坐標是________。
5、旅游問題。
古城荊州歷史悠久,文化燦爛。
二元一次方程與一次函數(shù)教案篇七
1.知識與能力目標。
(3)通過學生的思考和操作,力圖提示出方程與圖象之間的關系,引入二元一次方程組的圖象解法。同時培養(yǎng)學生初步的數(shù)形結合的意識和能力。
2.情感態(tài)度價值觀目標。
通過學生的自主探索,提示出方程和圖象之間的對應關系,加強新舊知識的聯(lián)系,培養(yǎng)學生的創(chuàng)新意識,激發(fā)了學生學習數(shù)學的興趣,使學生體驗數(shù)學活動充滿探索與創(chuàng)造。
教材分析。
前面已經(jīng)分別學習了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關系,是這兩章知識的綜合運用。強化了部分與整體的內(nèi)在聯(lián)系,知識與知識的內(nèi)在聯(lián)系,并為今后解析幾何的學習奠定基礎。
教學重點。
教學難點。
方程和函數(shù)之間的對應關系即數(shù)形結合的意識和能力。
教學方法。
學生操作------自主探索的方法。
學生通過自己操作和思考,結合新舊知識的聯(lián)系,自主探索出方程與圖象之間的對應關系,以引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程組和“形”----函數(shù)的圖象(直線)之間的對應關系,培養(yǎng)了學生數(shù)形結合的意識和能力。
教學過程。
一、故事引入。
迪卡兒的故事------蜘蛛給予的啟示。
在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標系,在坐標系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。
二、嘗試探疑。
1、y=x+1。
你們把我叫一次函數(shù),我也是二元一次方程??!這是怎么回事,你知道嗎?
學生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。
2、函數(shù)y=x+1上的任意一點的坐標是否滿足方程x-y=-1?
學生會迫不及待地拿起筆來計算。從函數(shù)y=x+1圖象上找?guī)讉€點看它們的坐標是否滿足方程x-y=-1。結果都滿足。然后學生就會自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點滿足不滿足方程x-y=-1。結果也都滿足。這樣他們就會搭成共識:函數(shù)y=x+1上的任意一點的坐標都滿足方程x-y=-1。
然后學生會用同樣的方法得出另一個結論:以方程x-y=-1的解為坐標的點一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x-y=-1到底有何關系呢?通過交流自動得出結論:以方程x-y=-1的解為坐標的點組成的圖象與一次函數(shù)y=x+1的圖象相同。
3.在同一坐標系下,化出y=x+1與y=4x-2的圖象,他們的交點坐標是什么?
方程組y=x+1的解是什么?二者有何關系?
y=4x-2。
y=x+1的解。
y=4x-2。
教師作最后總結:因為函數(shù)和方程有以上關系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。
解方程組x-2y=-2。
2x-y=2。
學生會很快的用消元法解出來。
老師發(fā)問:誰還有其他的方法?如果有,鼓勵學生大膽提出。并給予口頭表揚。如果沒有人用其他的`方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時,學生就會去探索新的思路、方法。
一回憶方程與函數(shù)的關系,有了!方程組的解不就是兩個方程變形得到的兩個函數(shù)圖象的交點坐標嗎?學生就會迅速動筆用這種方法把方程解出來。作完之后,互相交流。學生總結一下做題步驟:
1.把兩個方程都化成函數(shù)表達式的形式。
2.畫出兩個函數(shù)的圖象。
3.畫出交點坐標,交點坐標即為方程組的解。
問題又出來了,有的同學的解是x=2有的同學的解是x=2.1y=2.1。
y=1.9有的同學的解是……雖然都和消元法得到的結果相近,但各不相同。
老師提問:你能說一下用圖象法解方程組的不足嗎?
學生爭先恐后的回答:用這種方法求的解是近似值。不準確。學生提出疑問:既然不準確,那學習它有什么用呢?用消元法就足夠了!
教師解釋一下:在現(xiàn)實生活和生產(chǎn)中,我們會遇到特別復雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點坐標。教師可以用z+z智能教育平臺演示一下。
用作圖象的方法解方程組,這體現(xiàn)了兩個知識點的內(nèi)在聯(lián)系。學數(shù)學知識,探索知識點之間的聯(lián)系,可起到化新為舊的作用,達到事半功倍的效果。逐步讓學生學會這種學習新知識的技巧。
四、引申。
方程組x+y=2。
x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?
學生用消元法開始解方程組,結果無解,怎么回事呢?學生會嘗試運用方程組的圖象解法。畫出兩個函數(shù)圖象。答案有了!圖象是平行的,沒有交點。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。
因為有了上面的用作圖象法解方程組,在這里,學生就會自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結合的意識和能力。
五、課后小結。
本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對應關系,從而引入二元一次方程組的圖象解法,同時也建立了“數(shù)”----二元一次方程與“形”------函數(shù)圖象之間的對應關系,培養(yǎng)了學生初步的數(shù)形結合的意識和能力。
六、作業(yè)。
1.用作圖象法解方程組2x+y=4。
2x-3y=12。
2.如圖,直線l、l相交于點a,試求出a點坐標。
教學反思。
這節(jié)課由故事引入,激發(fā)了學生極大的學習興趣。然后提出了三個尖銳的問題,讓學生嘗試探索,在探索中既體會到了探索的艱辛,又體會到了成功的喜悅。在應用和引申過程中,盡量讓學生自主的發(fā)現(xiàn)問題,自主的解決問題。學生在緊張、愉快中完成了這節(jié)課的學習。
二元一次方程與一次函數(shù)教案篇八
函數(shù)、方程和不等式都是人們刻畫現(xiàn)實世界的重要數(shù)學模型。用函數(shù)的觀點看方程(組)與不等式,使學生不僅能加深對方程(組)、不等式的理解,提高認識問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學的統(tǒng)一美。本節(jié)課是學生學習完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對一次函數(shù)和二元一次方程(組)關系的探究,學生在探索過程中體驗數(shù)形結合的思想方法和數(shù)學模型的應用價值,這對今后的學習有著十分重要的意義。
2、教學重難點。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
3、教學目標。
解決問題:能綜合應用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關實際問題。
情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信心。
二、教法說明。
對于認知主體――學生來說,他們已經(jīng)具備了初步探究問題的能力,但是對知識的主動遷移能力較弱,為使學生更好地構建新的認知結構,促進學生的發(fā)展,我將在教學中采用探究式教學法。以學生為中心,使其在“生動活潑、民主開放、主動探索”的氛圍中愉快地學習。
三、教學過程。
(一)感知身邊數(shù)學。
學生已經(jīng)學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。
[設計意圖]建構主義認為,在實際情境中學習可以激發(fā)學生的學習興趣。因此,用“上網(wǎng)收費”這一生活實際創(chuàng)設情境,并用問題啟發(fā)學生去思、鼓勵學生去探、激勵學生去說,努力給學生造成“心求通而未能得,口欲言而不能說”的情勢,從而喚起學生強烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動中來。
教學引入。
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。
動畫演示:
場景一:正方形折疊演示。
師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)―邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學生活動:各自測量。]。
鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。
講授新課。
找一兩個學生表述其結論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)。
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學生活動:尋找矩形性質(zhì)。]。
動畫演示:
場景三:矩形的性質(zhì)。
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學生活動;尋找菱形性質(zhì)。]。
動畫演示:
場景四:菱形的性質(zhì)。
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時提出問題,引導學生進行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?
[學生活動:積極思考,有同學做躍躍欲試狀。]。
師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形?!?/p>
“有一個角是直角的菱形叫做正方形?!?/p>
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。
(二)享受探究樂趣。
[設計意圖]用一連串的問題引導學生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個方面的關系,為探索二元一次方程組的解與直線交點坐標的關系作好鋪墊。
[設計意圖]學生經(jīng)過自主探索、合作交流,從數(shù)和形兩個角度認識一次函數(shù)與二元一次方程組的關系,真正掌握本節(jié)課的重點知識,從而在頭腦中再現(xiàn)知識的形成過程,避免單純地記憶,使學習過程成為一種再創(chuàng)造的過程。此時教師及時對學生進行鼓勵,充分肯定學生的探究成果,關注學生的情感體驗。
(三)乘坐智慧快車。
[設計意圖]為培養(yǎng)學生的發(fā)散思維和規(guī)范解題的習慣,引導學生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費方式好嗎?”再次激起學生強烈的求知欲望和主人翁的學習姿態(tài)。通過此問題的探究,使學生有效地理解本節(jié)課的難點,體會數(shù)形結合這一思想方法的應用。
(四)體驗成功喜悅。
1、搶答題。
2、旅游問題。
[設計意圖]抓住學生對競爭充滿興趣的心理特征,用搶答題使學生的眼、耳、腦、口得到充分的調(diào)動,并在搶答中品味成功的快樂,提高思維的速度。在學生感興趣的旅游問題中,進一步培養(yǎng)學生應用數(shù)學的意識,更好地促進學生對本節(jié)課難點的理解和應用,幫助學生不斷完善新的認知結構。
(五)分享你我收獲。
在課堂臨近尾聲時,向?qū)W生提出:通過今天的學習,你有什么收獲?你印象最深的是什么?
[設計意圖]培養(yǎng)學生歸納和語言表達能力,鼓勵學生從數(shù)學知識、數(shù)學方法和數(shù)學情感等方面進行自我評價。
(六)開拓嶄新天地。
1、數(shù)學日記。
2、布置作業(yè)。
[設計意圖]新課程強調(diào)發(fā)展學生數(shù)學交流的能力,用數(shù)學日記給學生提供一種表達數(shù)學思想方法和情感的方式,以體現(xiàn)評價體系的多元化,并使學生嘗試用數(shù)學的眼睛觀察事物,體驗數(shù)學的價值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學,讓“不同的人在數(shù)學上得到不同的發(fā)展”。
四、教學設計反思。
1、貫穿一個原則――以學生為主體的原則。
2、突出一個思想――數(shù)形結合的思想。
3、體現(xiàn)一個價值――數(shù)學建模的價值。
4、滲透一個意識――應用數(shù)學的意識。
二元一次方程與一次函數(shù)教案篇九
情感態(tài)度:在探究活動中培養(yǎng)學生嚴謹?shù)目茖W態(tài)度和勇于探索的科學精神,在師生、生生的交流活動中,學會與人合作,學會傾聽、欣賞和感悟,體驗數(shù)學的價值,建立自信心。
教學重難點。
難點:綜合運用方程(組)、不等式和函數(shù)的知識解決實際問題。
教學過程。
(一)引入新課。
學生已經(jīng)學習過列方程(組)解應用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結合前面對一次函數(shù)與一元一次方程、一元一次不等式之間關系的探究,我自然地提出問題:一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?,從而揭示課題。
(二)進行新課。
填空:二元一次方程可以轉(zhuǎn)化為________。
(3)是否直線上任意一點的坐標都是它所對應的二元一次方程的解?
此時教師留給學生充分探索交流的時間與空間,對學生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從形的角度看,解方程組相當于確定兩條直線交點的坐標。
進一步歸納出:從數(shù)的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值。
3、列一元二次不等式。
解法1:設上網(wǎng)時間為分,若按方式a則收元;若按方式b則收元。然后在同一坐標系中分別畫出這兩個函數(shù)的圖象,計算出交點坐標,結合圖象,利用直線上點位置的高低直觀地比較函數(shù)值的大小,得到當一個月內(nèi)上網(wǎng)時間少于400分時,選擇方式a省錢;當上網(wǎng)時間等于400分時,選擇方式a、b沒有區(qū)別;當上網(wǎng)時間多于400分時,選擇方式b省錢。
解法2:設上網(wǎng)時間為分,方式b與方式a兩種計費的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計算出直線與軸的交點坐標,類似地用點位置的高低直觀地找到答案。
注意:所畫的函數(shù)圖象都是射線。
4、習題。
(1)、以方程的解為坐標的所有點都在一次函數(shù)_____的圖象上。
(2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個交點,且交點坐標是________。
5、旅游問題。
古城荊州歷史悠久,文化燦爛。
二元一次方程與一次函數(shù)教案篇十
本節(jié)課是在學生已經(jīng)學會從單個一次函數(shù)的圖象分析獲取信息,進而解決有關實際問題的基礎上展開的。因此,本節(jié)課的重點應該放在怎樣從兩個函數(shù)圖象的比較、分析中提取有用信息,弄清兩者之間的聯(lián)系,從而提高學生的識圖能力與解決實際問題的能力。難點在于怎樣抓住有用的特征去分析、比較。于是,本節(jié)課的基本思路是以學生熟悉的一次函數(shù)的圖象及性質(zhì)為鋪墊,以學生感興趣的現(xiàn)實問題作素材,以交流合作為主要形式展開學習活動。
例1:某種摩托車的油箱最多可儲油10升,加滿油后,油箱中的剩余油量y(升)與摩托車行駛路程x(千米)之間的關系引伸的問題帶來了挑戰(zhàn)性的懸念。只有讓學生在探索問題之中學會提出問題,才能最終體驗到數(shù)學的抽象,形成穩(wěn)定的學習興趣。
2、本節(jié)課充分體現(xiàn)了學生在自主探索與合作交流中學會學習這一理念,學生有足夠的自主探索時間,有與同學合作互動的空間,有與老師交流表達的機會。學生不是從老師那里獲取知識,而是在數(shù)學活動的過程中發(fā)現(xiàn)規(guī)律、體驗成功。
3、本節(jié)課通過函數(shù)圖象獲取信息,解決實際問題,培養(yǎng)學生的形象思維及數(shù)學應用能力,同時培養(yǎng)學生良好的環(huán)保意識和熱愛生活的意識及利用函數(shù)圖象解決簡單的實際問題通過方程與函數(shù)關系的研究,建立良好的知識聯(lián)系。
1、個別差生的積極性還未調(diào)動起來,還須探索出關注差生的方法來提高教學及格率。
2、在分析一次函數(shù)表達式時,在課本上用的“數(shù)形結合”方法可另外用“待定系數(shù)法”分析;以便學生能拓展思維。
二元一次方程與一次函數(shù)教案篇十一
作為一位杰出的教職工,編寫教學設計是必不可少的,教學設計是把教學原理轉(zhuǎn)化為教學材料和教學活動的計劃。那么優(yōu)秀的教學設計是什么樣的呢?以下是小編為大家收集的二元一次方程與一次函數(shù)教學設計,歡迎閱讀與收藏。
2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
1、用作圖像法求二元一次方程組的近似值。
1、做圖像時要標準、精確,近似值才接近。
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。
問題1、
(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數(shù)y=5—x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發(fā)現(xiàn)了什么?
問題2、
(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4—2x與直線y=2x—12交點。
二元一次方程與一次函數(shù)教案篇十二
本節(jié)課通過探索“方程”與“函數(shù)圖像”的關系,培養(yǎng)學生數(shù)學轉(zhuǎn)化的思想,通過學習二元一次方程方程組的解與直線交點坐標之間的關系,使學生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應關系,進一步培養(yǎng)了學生數(shù)形結合的意識和能力.因此確定本節(jié)課的教學目標為:
3.發(fā)展學生數(shù)形結合的意識和能力,使學生在自主探索中學會不同數(shù)學模型間的聯(lián)系.。
教學重點。
教學難點。
通過對數(shù)學模型關系的探究發(fā)展學生數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識.。
1.教法學法。
啟發(fā)引導與自主探索相結合.。
2.課前準備。
教具:多媒體課件、三角板.。
學具:鉛筆、直尺、練習本、坐標紙.。
1.某水箱有5噸水,若用水管向外排水,每小時排水1噸,則x小時后還剩余y噸水.
(1)請找出自變量和因變量。
(2)你能列出x,y的關系式嗎。
(3)x,y的取值范圍是什么。
(4)在平面直角坐標系中畫出這個函數(shù)的圖形.(注意xy的取值范圍).
2.(1)方程x+y=5的解有多少個?你能寫出這個方程的幾個解嗎?
(3).在一次函數(shù)y=x5的圖像上任取一點,它的坐標適合方程x+y=5嗎?
x+y=5與y=x5表示的關系相同。
1.兩個一次函數(shù)圖象的交點坐標是相應的二元。
(2)兩個函數(shù)的交點坐標適合哪個方程?
xy5(3).解方程組驗證一下你的發(fā)現(xiàn)。2xy1。
練習:隨堂練習1。鞏固由一次函數(shù)的交點坐標找相應的二元一次方程組的解。
xy2(1)解。
2xy5(2)以方程x+y=2。
(3)以方程2x+y=5(4)方程組的解為坐標的點在圖象上是哪個點?
練習:知識技能1。鞏固由方程組的解求相應的一次函數(shù)的交點坐標。更深入的體會二元一次方程組的解與一次函數(shù)交點坐標之間的對應關系。
第三環(huán)節(jié)模型應用。
1.某公司要印制產(chǎn)品宣傳材料.
印刷廠的費用。
(1)請分別表示出兩個印刷廠費用與x的關系式。
(2)在同一直角坐標系中畫出函數(shù)的圖象。
(3)如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?
第四環(huán)節(jié)模型特例。
想一想。
么?
(1)觀察發(fā)現(xiàn)直線平行無交點;
(2)小組研究計算發(fā)現(xiàn)方程組無解;
(3)從側面驗證了兩直線有交點,對應的方程組有解,反之也成立;
(4)歸納小結:兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對應成比例方程組無解。
進一步培養(yǎng)了學生數(shù)形結合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.進一步挖掘出兩直線平行與k的關系。
第五環(huán)節(jié)課堂小結。
內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:
一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.。
2.方程組和對應的兩條直線的關系:
方程組的解是對應的兩條直線的交點坐標;
兩條直線的交點坐標是對應的方程組的解;
第六環(huán)節(jié)作業(yè)布置。
習題5.7。
二元一次方程與一次函數(shù)教案篇十三
1.會用加減法解一般地二元一次方程組。
2.進一步理解解方程組的消元思想,滲透轉(zhuǎn)化思想。
3.增強克服困難的勇力,提高學習興趣。
把方程組變形后用加減法消元。
根據(jù)方程組特點對方程組變形。
用加減消元法解方程組。
1.思考如何解方程組(用加減法)。
先觀察方程組中每個方程x的系數(shù),y的系數(shù),是否有一個相等。或互為相反數(shù)?
能否通過變形化成某個未知數(shù)的系數(shù)相等,或互為相反數(shù)?怎樣變形。
學生解方程組。
2.例1.解方程組
思考:能否使兩個方程中x(或y)的系數(shù)相等(或互為相反數(shù))呢?
學生討論,小組合作解方程組。
提問:用加減消元法解方程組有哪些基本步驟?
1.p40練習題(3)、(5)、(6)。
2.分別用加減法,代入法解方程組。
解二元一次方程組的加減法,代入法有何異同?
p33.習題2.2a組第2題(3)~(6)。
b組第1題。
選作:閱讀信息時代小窗口,高斯消去法。
后記:
2.3二元一次方程組的應用(1)
二元一次方程與一次函數(shù)教案篇十四
學習目標:
2、能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值。
學習重點:
學習難點:
1、做圖像時要標準、精確,近似值才接近。
學習方法:
先自學課本,用心思考自主學習部分,努力獨立完成,再與其他同學討論未明白的內(nèi)容。課上展示,針對自己不明白問題多聽多問。
自主學習部分:
問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。
(3)在一次函數(shù)y=5-x的圖像上任取一點,它們的坐標適合方程x+y=5嗎?
(5)由以上的探究過程,你發(fā)現(xiàn)了什么?
(3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點的坐標。
合作探究:
(1)用做圖像的方法解方程組。
(2)用解方程的方法求直線y=4-2x與直線y=2x-12交點。
二元一次方程與一次函數(shù)教案篇十五
教材通過引例對圖像方法與代數(shù)方法的比較,使學生了解解決應用問題的策略和方法是多樣性的,同時也使學生理解圖像方法與代數(shù)方法在解決具體問題中各自的優(yōu)劣,從而對方法作出正確的選擇.對于教材的這一方面的使用,教師應根據(jù)自己學生的特點,選擇合理的方式去讓學生理解不同方法去解決同一問題。
本節(jié)課主要要求學生能夠利用二元一次方程組解決一次函數(shù)的解析式問題,根據(jù)一次函數(shù)解析式進一步解決相關的一些問題。要讓學生理解為什么要用二元一次方程組去求解一次函數(shù)的解析式的必要性,從而掌握本堂課的基礎知識。在教學的過程中,要讓學生充分理解圖像方法和代數(shù)方法解決問題的特點,在這個基礎上,學生掌握用二元一次方程組解決一次函數(shù)的解析式問題才會有著堅實的理論基礎,有關這一方面的題目要讓學生充分討論,其理解才會深刻;同時要以這一部分的知識為載體,結合教材例題,在補充分段圖形題,甚至表格題,讓學生充分理解用方程的思想去解決函數(shù)問題。
二元一次方程與一次函數(shù)教案篇十六
本節(jié)課的教學設計反思是圍繞著今天“六個有效”的主題活動展開反思的。
學生已初步掌握了函數(shù)的概念、一次函數(shù)的圖象及性質(zhì),并了解了函數(shù)的三種表達方式:圖象法、列表法、解析式法。在此基礎上通過知識提問引導學生進一步掌握一次函數(shù)的相關知識并能靈活的應用到習題中,有效的“復習回顧”在本節(jié)課起到了承上啟下的作用。
根據(jù)實際的問題情境感受生活中的一次函數(shù),利用已知的條件,來確定一次函數(shù)中正比例函數(shù)表達式,并理解確定正比例函數(shù)表達式的方法和條件。
設置這個例題是物理學中的一個彈簧現(xiàn)象,目的在于讓學生從不同的情景中獲取信息來求一次函數(shù)表達式,一次函數(shù)表達式的確定需要兩個條件,能由條件利用“待定系數(shù)”法求出一些簡單的一次函數(shù)表達式,并能解決有關現(xiàn)實問題.并進一步體會函數(shù)表達式是刻畫現(xiàn)實世界的一個很好的數(shù)學模型,而且體現(xiàn)了數(shù)學這門學科的基礎性。
通過對求一次函數(shù)表達式方法的歸納和提升,加強學生對求一次函數(shù)表達式方法和步驟的理解,通過“感悟收獲”解決本節(jié)課的重點和難點。
通過分小組“比一比、練一練”的活動形式,不僅激發(fā)了學生學習數(shù)學知識的興趣,而且能將本節(jié)課的知識靈活的應用到習題中,提高了學生的解題能力和思維能力。
根據(jù)本班學生及教學情況在教學課堂后為了進一步鞏固課堂知識,布置一定量的作業(yè),難度不應過大,有效的作業(yè)更能拓展學生的思維,并體會解決問題的多樣性。
二元一次方程與一次函數(shù)教案篇十七
(2)通過“做一做”引入例1,進一步發(fā)展學生數(shù)形結合的意識和能力.
(1)在探究二元一次方程和一次函數(shù)的對應關系中,在體會近似解與準確解中,培養(yǎng)學生勤于思考、精益求精的精神.
(2)在經(jīng)歷同一數(shù)學知識可用不同的數(shù)學方法解決的過程中,培養(yǎng)學生的創(chuàng)新意識和變式能力.
數(shù)形結合和數(shù)學轉(zhuǎn)化的思想意識.
教具:多媒體課件、三角板.
學具:鉛筆、直尺、練習本、坐標紙.
內(nèi)容:
1.方程x+y=5的解有多少個?是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.
內(nèi)容:
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y=和y=2x,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像.
(2)求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應的函數(shù)表達式聯(lián)立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
探究方程與函數(shù)的相互轉(zhuǎn)化。
內(nèi)容:
例1用作圖像的方法解方程組。
例2如圖,直線與的交點坐標是.
內(nèi)容:
1.已知一次函數(shù)與的圖像的交點為,則.
2.已知一次函數(shù)與的圖像都經(jīng)過點a(—2,0),且與軸分別交于b,c兩點,則的面積為.
(a)4(b)5(c)6(d)7。
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點坐標可以看作哪個方程組的解?
內(nèi)容:以“問題串”的形式,要求學生自主總結有關知識、方法:
(2)一次函數(shù)圖像上的點的坐標都適合相應的二元一次方程.
2.方程組和對應的兩條直線的關系:
(1)方程組的解是對應的兩條直線的交點坐標;。
(2)兩條直線的交點坐標是對應的方程組的解;。
(1)代入消元法;。
(2)加減消元法;。
(3)圖像法.要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.
習題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。
二元一次方程與一次函數(shù)教案篇十八
1、使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現(xiàn)實生活的聯(lián)系和作用2、通過應用題教學使學生進一步使用代數(shù)中的方程去反映現(xiàn)實世界中等量關系,體會代數(shù)方法的優(yōu)越性。
難點:正確發(fā)找出問題中的兩個等量關系。
一、復習。
列方程解應用題的步驟是什么?
審題、設未知數(shù)、列方程、解方程、檢驗并答。
新課:
看一看課本99頁探究1。
問題:
1題中有哪些已知量?哪些未知量?
2題中等量關系有哪些?
3如何解這個應用題?
本題的等量關系是(1)30只母牛和15只小牛一天需用飼料為675kg。
(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940。
練一練:
【本文地址:http://aiweibaby.com/zuowen/16743117.html】