公式法因式分解教案(模板19篇)

格式:DOC 上傳日期:2023-11-12 16:23:18
公式法因式分解教案(模板19篇)
時間:2023-11-12 16:23:18     小編:雅蕊

編寫教案的過程也是教師自身專業(yè)發(fā)展的一個重要環(huán)節(jié)。首先,教案應(yīng)明確教學目標,明確學生需要達到的知識、能力和情感目標。教案范文中對于學生的學習鞏固和反饋評估也給出了很好的建議和思路。

公式法因式分解教案篇一

知識點:

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

教學目標:

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

考查重難點與常見題型:

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

教學過程:

多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法。

如多項式。

其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。

(2)運用公式法,即用寫出結(jié)果。

(3)十字相乘法。

(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

(5)求根公式法:如果有兩個根x1,x2,那么。

2、教學實例:學案示例。

3、課堂練習:學案作業(yè)。

4、課堂:

5、板書:

6、課堂作業(yè):學案作業(yè)。

7、教學反思:

公式法因式分解教案篇二

2.理解完全平方式的意義和特點,培養(yǎng)學生的判斷能力.

3.進一步培養(yǎng)學生全面地觀察問題、分析問題和逆向思維的能力.。

4.通過運用公式法分解因式的教學,使學生進一步體會“把一個代數(shù)式看作一個字母”的換元思想。

教學重點和難點。

重點:運用完全平方式分解因式.

難點:靈活運用完全平方公式公解因式.

教學過程設(shè)計。

一、復(fù)習。

1.問:什么叫把一個多項式因式分解?我們已經(jīng)學習了哪些因式分解的方法?

答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解.我們學過的因式分解的方法有提取公因式法及運用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

問:我們學過的乘法公式除了平方差公式之外,還有哪些公式?

答:有完全平方公式.

請寫出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

這節(jié)課我們就來討論如何運用完全平方公式把多項式因式分解.

二、新課。

和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式.運用這兩個式子,可以把形式是完全平方式的多項式分解因式.

問:具備什么特征的多項是完全平方式?

答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式.

問:下列多項式是否為完全平方式?為什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

x2+6x+9=(x+3).

(2)不是完全平方式.因為第三部分必須是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因為缺第三部分.

答:完全平方公式為:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍.所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

問:請同學分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?

答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“”是的平方,第二項“-m”是1與m/4的積的2倍的相反數(shù),因此這個多項式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+2=(1-)2.

解法2先提出,則。

1-m+=(16-8m+m2)。

=(42-2·4·m+m2)。

=(4-m)2.

三、課堂練習(投影)。

1.填空:

(1)x2-10x+()2=()2;

(2)9x2+()+4y2=()2;

(3)1-()+m2/9=()2.

2.下列各多項式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多。

項式改變?yōu)橥耆椒绞?

(1)x2-2x+4;(2)9x2+4x+1;(3)a2-4ab+4b2;

(4)9m2+12m+4;(5)1-a+a2/4.

3.把下列各式分解因式:

(1)a2-24a+144;(2)4a2b2+4ab+1;

(3)19x2+2xy+9y2;(4)14a2-ab+b2.

答案:

1.(1)25,(x-5)2;(2)12xy,(3x+2y)2;(3)2m/3,(1-m3)2.

2.(1)不是完全平方式,如果把第二項的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式.

(2)不是完全平方式,如果把第二項“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式.

(3)是完全平方式,a2-4ab+4b2=(a-2b)2.

(4)是完全平方式,9m2+12m+4=(3m+2)2.

(5)是完全平方式,1-a+a2/4=(1-a2)2.

3.(1)(a-12)2;(2)(2ab+1)2;

(3)(13x+3y)2;(4)(12a-b)2.

四、小結(jié)。

運用完全平方公式把一個多項式分解因式的.主要思路與方法是:

1.首先要觀察、分析和判斷所給出的多項式是否為一個完全平方式,如果這個多項式是一個完全平方式,再運用完全平方公式把它進行因式分解.有時需要先把多項式經(jīng)過適當變形,得到一個完全平方式,然后再把它因式分解.

2.在選用完全平方公式時,關(guān)鍵是看多項式中的第二項的符號,如果是正號,則用公式a2+2ab+b2=(a+b)2;如果是負號,則用公式a2-2ab+b2=(a-b)2.

五、作業(yè)。

把下列各式分解因式:

1.(1)a2+8a+16;(2)1-4t+4t2;

(3)m2-14m+49;(4)y2+y+1/4.

2.(1)25m2-80m+64;(2)4a2+36a+81;

(3)4p2-20pq+25q2;(4)16-8xy+x2y2;

(5)a2b2-4ab+4;(6)25a4-40a2b2+16b4.

3.(1)m2n-2mn+1;(2)7am+1-14am+7am-1;

4.(1)x-4x;(2)a5+a4+a3.

答案:

1.(1)(a+4)2;(2)(1-2t)2;

(3)(m-7)2;(4)(y+12)2.

2.(1)(5m-8)2;(2)(2a+9)2;

(3)(2p-5q)2;(4)(4-xy)2;

(5)(ab-2)2;(6)(5a2-4b2)2.

3.(1)(mn-1)2;(2)7am-1(a-1)2.

4.(1)x(x+4)(x-4);(2)14a3(2a+1)2.

課堂教學設(shè)計說明。

1.利用完全平方公式進行多項式的因式分解是在學生已經(jīng)學習了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進行的,因此在教學設(shè)計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學方法,引導(dǎo)學生積極思考問題,從中培養(yǎng)學生的思維品質(zhì).

2.本節(jié)課要求學生掌握完全平方公式的特點和靈活運用公式把多項式進行因式分解的方法.在教學設(shè)計中安排了形式多樣的課堂練習,讓學生從不同側(cè)面理解完全平方公式的特點.例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學生當堂能夠掌握運用平方公式進行完全因式分解的方法.

公式法因式分解教案篇三

因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學生學習了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學生接受對立統(tǒng)一的觀點,培養(yǎng)學生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發(fā)表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

2、通過公式a-b=(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。

3、能運用提公因式法、公式法進行綜合運用。

4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學生的化歸思想。

靈活運用平方差公式進行分解因式。

平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

公式法因式分解教案篇四

教學設(shè)計示例。

――完全平方公式(1)。

教學目標。

2.理解完全平方式的意義和特點,培養(yǎng)學生的判斷能力.

3.進一步培養(yǎng)學生全面地觀察問題、分析問題和逆向思維的能力.。

4.通過分解因式的教學,使學生進一步體會“把一個代數(shù)式看作一個字母”的換元思想。

教學重點和難點。

重點:運用完全平方式分解因式.

難點:靈活運用完全平方公式公解因式.

教學過程設(shè)計。

一、復(fù)習。

1.問:什么叫把一個多項式因式分解?我們已經(jīng)學習了哪些因式分解的方法?

答:把一個多項式化成幾個整式乘積形式,叫做把這個多項式因式分解.我們學過的因式分解的方法有提取公因式法及運用平方差公式法.

2.把下列各式分解因式:

(1)ax4-ax2(2)16m4-n4.

解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。

(2)16m4-n4=(4m2)2-(n2)2。

=(4m2+n2)(4m2-n2)。

=(4m2+n2)(2m+n)(2m-n).

問:我們學過的乘法公式除了平方差公式之外,還有哪些公式?

答:有完全平方公式.

請寫出完全平方公式.

完全平方公式是:

(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.

這節(jié)課我們就來討論如何運用完全平方公式把多項式因式分解.

二、新課。

和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到。

a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.

這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式.運用這兩個式子,可以把形式是完全平方式的多項式分解因式.

問:具備什么特征的多項是完全平方式?

答:一個多項式如果是由三部分組成,其中的兩部分是兩個式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個式子(或數(shù))的乘積的二倍,符號可正可負,像這樣的式子就是完全平方式.

問:下列多項式是否為完全平方式?為什么?

(1)x2+6x+9;(2)x2+xy+y2;

(3)25x4-10x2+1;(4)16a2+1.

答:(1)式是完全平方式.因為x2與9分別是x的平方與3的平方,6x=2·x·3,所以。

x2+6x+9=(x+3).

(2)不是完全平方式.因為第三部分必須是2xy.

(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。

25x-10x+1=(5x-1).

(4)不是完全平方式.因為缺第三部分.

答:完全平方公式為:

其中a=3x,b=y,2ab=2·(3x)·y.

例1把25x4+10x2+1分解因式.

分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍.所以多項式25x4+10x2+1是完全平方式,可以運用完全平方公式分解因式.

解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

例2把1-m+分解因式.

問:請同學分析這個多項式的特點,是否可以用完全平方公式分解因式?有幾種解法?

答:這個多項式由三部分組成,第一項“1”是1的平方,第三項“”是的平方,第二項“-m”是1與m/4的積的2倍的相反數(shù),因此這個多項式是完全平方式,可以用完全平方公式分解因式.

解法11-m+=1-2·1·+()2=(1-)2.

解法2先提出,則。

1-m+=(16-8m+m2)。

=(42-2·4·m+m2)。

=(4-m)2.

第12頁。

公式法因式分解教案篇五

“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

2、教學目標。

(1)會推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。

(3)會用提公因式法、公式法進行因式分解。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點、難點和關(guān)鍵。

重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

難點:正確運用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

二、本單元教學的方法和策略:

3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。

三、課時安排:

2.1平方差公式1課時。

2.2完全平方公式2課時。

公式法因式分解教案篇六

九九乘法表是小學生學習數(shù)學時一定要學習的內(nèi)容,為小學生抄寫一份九九乘法表也是不少家長的功課之一。其實用excel作一份乘法表也是一個不錯的選擇。it168曾經(jīng)發(fā)表過一篇利用vba編程實現(xiàn)“九九乘法表”的文章,它就為我們指引了一條很不錯的制作乘法表的道路,令我們很受啟發(fā)。

在excel中,除了用vba編程來制作乘法表以外,我們還可以直接利用公式來寫乘法表,效果也是不錯的。下面我們以excel2007為例來說明。

一、建立乘法表。

首先我們在excel中建立一份空的表格,在b1:j1單元格區(qū)域分別填寫數(shù)字1至9,在a2:a10單元格也分別填寫數(shù)字1至9,得到如圖1所示表格。

圖1excel2007填寫基本數(shù)字。

圖2excel2007填充單元格。

在此公式中其實只用到了一個if函數(shù)。所寫乘法表中被乘數(shù)是b1:j1中的數(shù)據(jù),而乘數(shù)則是a2:a10單元格中的數(shù)據(jù)。我們所用公式的意思可以這樣理解:首先判斷被乘數(shù)是否小于或等于乘數(shù),如果是,那么就輸出結(jié)果,如果不是,那么在此單元格中就輸出空值。

二、為乘法表格添加表格線。

感覺那乘法表有些簡陋?不要緊,我們?yōu)楸砀窦由媳砀窬€就好了,

當然,只為那些有內(nèi)容的單元格添加表格線。辦法嗎?首先隱藏不必要的輔助數(shù)據(jù),然后再用條件格式的方法為乘法表添加表格線。

先點擊a列列標選中a列全部單元格,點擊右鍵,在彈出菜單中點擊“隱藏”命令,然后再點擊第一行的行號,選中全部第一行的單元格,再點擊右鍵,在彈出菜單中點擊“隱藏”命令,這樣,輔助數(shù)據(jù)就不見了。

現(xiàn)在,我們再選中b2單元格,然后點擊功能區(qū)“開始”選項卡“樣式”功能組“條件格式”按鈕,在彈出的菜單中點擊“新建規(guī)則”命令,打開“新建格式規(guī)則”對話框。然后在“選擇規(guī)則類型”列表中選擇“使用公式確定要設(shè)置格式的單元格”命令,然后在“為符合此公式的值設(shè)置格式”下方的輸入框中輸入公式“=b2“””,如圖3所示。

圖3excel2007編輯格式規(guī)則。

再點擊下方的“格式”按鈕,打開“設(shè)置單元格格式”對話框,在“邊框”選項卡中設(shè)置單元格的邊框格式,如圖4所示。當然,我們還可以做出其它的設(shè)置。確定后,b2單元格就會添加有邊框了。

圖4excel2007設(shè)置單元格格式。

再選中b2單元格,然后點擊功能區(qū)“開始”選項卡“剪貼板”功能組中“格式刷”按鈕,然后“刷取”b2:j10單元格區(qū)域復(fù)制格式,那么,在乘法表中非空的那些單元格就會自動添加邊框線,而沒有內(nèi)容的那些單元格則不會有任何變化。如圖5所示。

圖5excel2007添加邊框線。

好了,不多說了,有興趣自己試試吧。

公式法因式分解教案篇七

教學目標:

1、進一步鞏固因式分解的概念;2、鞏固因式分解常用的三種方法。

3、選擇恰當?shù)姆椒ㄟM行因式分解4、應(yīng)用因式分解來解決一些實際問題。

5、體驗應(yīng)用知識解決問題的樂趣。

教學重點:靈活運用因式分解解決問題。

教學難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒?,拓展練?、3。

教學過程:

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧。

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點:(1).分解的對象必須是多項式.

(2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

4、強化訓練。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

公式法因式分解教案篇八

1、會運用因式分解進行簡單的多項式除法。

二、教學重點與難點教學重點:

教學重點。

因式分解在多項式除法和解方程兩方面的應(yīng)用。

教學難點:

應(yīng)用因式分解解方程涉及較多的推理過程。

三、教學過程。

(一)引入新課。

(二)師生互動,講授新課。

一個小問題:這里的x能等于3/2嗎?為什么?

想一想:那么(4x—9)(3—2x)呢?練習:課本p162課內(nèi)練習。

合作學習。

等練習:課本p162課內(nèi)練習2。

(三)梳理知識,總結(jié)收獲因式分解的兩種應(yīng)用:

(四)布置課后作業(yè)。

作業(yè)本6、42、課本p163作業(yè)題(選做)。

公式法因式分解教案篇九

王老師的《因式分解》這節(jié)課,他上的這節(jié)課每個環(huán)節(jié)層層遞進,落實有效,教學流程自然流暢,有獨創(chuàng)性。教學設(shè)計張弛有度,實施過程中有水到渠成的銜接美。教師教態(tài)大方,親和力強,對學生啟發(fā)點撥到位,駕馭課堂的能力強,整節(jié)課,學生在愉悅、寬松和諧的學習氛圍中,學得輕松,學得愉快。收到良好的教學效果。其中印象最深的環(huán)節(jié)有:

1.新課引入十分好,但沒把握好進一步解讀課題的機會。

2.教師結(jié)構(gòu)設(shè)計的很好,教學過程中相當自然。

3.課堂小結(jié)很好,把因式分解(平方差公式)的特點進行了全面的概括,但略顯課堂時間較緊。

4.練習設(shè)計由易到難,層層遞進,若教師再講的少一點,教學效果可能較佳。

5.作為一名實習教師,在原有的基礎(chǔ)上有很多進步,課上得相當不錯。

6.教師的'語言親和力強,學生和教師配合默契,課堂氣氛高漲,但略顯教師講課過多。

7.陳老師能根據(jù)我班級學生特點,設(shè)計教學內(nèi)容,教學效果體現(xiàn)得更佳。

8.教師在教學過程中缺少讓學生“感悟”的過程。

9.教師教學語言規(guī)范,教態(tài)自然,對學生有親和力,教室互相到位,對學生的學習有一定的幫助。

10.能為學生提供大量數(shù)學活動的機會,讓學生成為課堂學習的主人。

通過這次評課,讓我在教材教法、課堂教學策略等方面受益匪淺,并希望課堂上一些新理念、策略充實以后教學實踐中。

公式法因式分解教案篇十

本節(jié)課的教學目標是讓學生理解一元二次方程的根與二次三項式因式分解的關(guān)系,掌握公式法分解二次三項式。在教學引入中,通過二次三項式因式分解方法的探究,引導(dǎo)學生經(jīng)歷:觀察思考歸納猜想論證等一系列探究過程,從而讓學生領(lǐng)會和感悟認識問題和解決問題的一般規(guī)律:即由特殊到一般,再由一般到特殊,同時培養(yǎng)了的學生動手能力和觀察思考和歸納小結(jié)的能力。另一方面通過運用一元二次方程根的知識來分解因式,讓學生體會知識間普遍聯(lián)系的數(shù)學美。

總的來說,建立在對所任教的學生仔細分析和對教學大綱認真研究基礎(chǔ)上所作的教材處理和教學預(yù)設(shè)是貼近學生實際的`,經(jīng)過這節(jié)課的學習,學生較好的達到了教學目標的要求,較好的完成了教學任務(wù),教學效果良好。此外,整節(jié)課比較好地體現(xiàn)了多媒體在教學上的輔助作用,特別是實物投影儀的運用可以直觀快捷地把學生的練習情況反映在全班學生面前,這些都大大提高了教學效率,增大了教學容量,取得了良好的教學效果。

但本節(jié)課也有許多不足之處,如:

2、作業(yè)布置這一教學環(huán)節(jié)作為重要的一環(huán)應(yīng)放入課堂上;

3、模仿練習的題目應(yīng)該把分解好的部分乘出來看是否與左邊相等,做好返回檢驗的工作,這樣更便于學生的理解。

在今后的教學中應(yīng)該更好更深刻的研究教材、研究教法、研究我們的學生,備課更充分、更完善些,從而更好的提高課堂教學的有效性。

上海市梅園中學:傅琳。

公式法因式分解教案篇十一

大家好!今天我說課的內(nèi)容是《14.3.2公式法》(第一課時),主要內(nèi)容是用平方差公式分解因式。我準備從教材的地位和作用、學情分析、學習目標和重難點的確定、教學環(huán)節(jié)的設(shè)計等方面確定本節(jié)課。

一、教材的地位和作用。

因式分解是解析式的一種恒等變形,因式分解不但在解方程等問題中及其重要,在數(shù)學科學其他問題和一般科學研究中也具有廣泛應(yīng)用,是重要的數(shù)學基礎(chǔ)知識。因式分解的方法一般包括提公因式法、公式法、分組分解法、十字相乘法、待定系數(shù)法等。而在本章只學習提公因式法和公式法,這兩種基本知識和方法。它對數(shù)感和符號意識的形成具有重要作用,是進一步學習分式和分式方程的基礎(chǔ)。在中考題中分式化簡求值問題,不可避免地用到因式分解。而利用平方差公式進行因式分解的基本方法。

二、學生的學情分析。

學生已經(jīng)學習了用字母表示數(shù)、整式的概念、整式的加、減、乘、除、乘方,以及用提公因式法分解因式,具備繼續(xù)學習知識的基礎(chǔ)和經(jīng)驗,但在細節(jié)方面還處在欠缺。

三、教學目標的確定。

我認真鉆研教材,在考慮學生的實際水平情況下,我設(shè)計如下教學目標。

教學目標:

1、掌握平方差公式的特點,能運用平方差公式進行因式分解。

2、掌握平方差公式分解因式的方法,掌握提公因式法、公式法分解因式綜合應(yīng)用。

3、經(jīng)歷探究平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性。

4、培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的`應(yīng)用價值。

教學重點:熟練運用平方差公式進行因式分解。

教學難點:

1、掌握平方差公式的特點。

四、教學過程的設(shè)計。

本著學生的認知規(guī)律是由淺入深、由易到難。因此在教學環(huán)節(jié)設(shè)計時,我特意設(shè)計如下教學環(huán)節(jié):

第二環(huán)節(jié)讓學生帶著問題自學課本p116例題以前部分,嘗試回答下列問題:

(1)有什么特點?

(2)你能將它分解因式嗎?讓學生帶著問題去自學,目的明確,針對性強,通過學生發(fā)現(xiàn)并描述特點,為下面公式剖析做了鋪墊。然后讓學生口答課本p117頁第一題用一組練習進行鞏固加深對公式的認識,另外我選擇教材的練習題的目的是書本是我們學習的藍本,是專家們深思熟慮后的成果。

第三個環(huán)節(jié)通過小組互學,探討公式。用3個問題,觀察公式回答下列問題:

(1)這個公式有什么特點?你能用語言敘述這個公式嗎?

(2)公式中字母a、b可以表示什么?

(3)因式分解平方差公式與我們前面所學的乘法公式平方差公式有什么區(qū)別?通過小組合作探究,學生深入探究,教師加以引導(dǎo),剖析公式,學習難點得以突破。

第四個環(huán)節(jié),在學生已經(jīng)掌握公式的基礎(chǔ)上,進行運用平方差公式進行因式分解,由一組簡單基礎(chǔ)題目入手,符合學生認知規(guī)律,同時有利于增強學生的自信心。然后解決課前引入的問題,提出問題,便要解決問題,這樣前后呼應(yīng)。)。

第五個環(huán)節(jié)通過教師引導(dǎo),例題精講,讓學生掌握因式分解的方法。

(1)(2)(3)通過例題第一小題的設(shè)計目的是讓學生發(fā)現(xiàn)因式分解應(yīng)分解徹底,第二和第三個題目目的是讓學生能夠總結(jié)出因式分解的一般步驟:一提;二用;三查。教師要強調(diào)必須進行到每一個多項式都不能分解為止。題目設(shè)計層層深入,符合學生認知規(guī)律。然后通過嘗試練習,學生進行展示,便于發(fā)現(xiàn)學生的出現(xiàn)的問題,及時進行糾正。

第六個環(huán)節(jié),檢驗學生對本節(jié)課的掌握情況,我側(cè)重于學生收獲方面的體驗。通過學生暢談收獲,有利于培養(yǎng)學生的自信心。

第七個環(huán)節(jié),通過四個題目,檢測學生本節(jié)課對知識的掌握情況。通過四個題目的設(shè)計,旨在讓學生掌握公式的特點,并會熟練地利用平方差公式進行因式分解。其中第四題是實際問題,設(shè)計此題是為了讓學生學會用已有的知識解決實際問題。

以上是我對本節(jié)課的整體設(shè)計思路,不當之處,敬請專家們批評指正!

公式法因式分解教案篇十二

會應(yīng)用平方差公式進行因式分解,發(fā)展學生推理能力。

2、過程與方法。

經(jīng)歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數(shù)學知識的完整性。

3、情感、態(tài)度與價值觀。

培養(yǎng)學生良好的互動交流的習慣,體會數(shù)學在實際問題中的應(yīng)用價值。

1、重點:利用平方差公式分解因式。

2、難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。

3、關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來。

采用“問題解決”的教學方法,讓學生在問題的'牽引下,推進自己的思維。

一、觀察探討,體驗新知。

【問題牽引】。

請同學們計算下列各式。

(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。

【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。

(1)(a+5)(a—5)=a2—52=a2—25;

(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。

【教師活動】引導(dǎo)學生完成下面的兩道題目,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律。

1、分解因式:a2—25;2、分解因式16m2—9n。

【學生活動】從逆向思維入手,很快得到下面答案:

(1)a2—25=a2—52=(a+5)(a—5)。

(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。

【教師活動】引導(dǎo)學生完成a2—b2=(a+b)(a—b)的同時,導(dǎo)出課題:用平方差公式因式分解。

平方差公式:a2—b2=(a+b)(a—b)。

評析:平方差公式中的字母a、b,教學中還要強調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項式、多項式)。

二、范例學習,應(yīng)用所學。

【例1】把下列各式分解因式:(投影顯示或板書)。

(1)x2—9y2;(2)16x4—y4;

(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;

(5)m2(16x—y)+n2(y—16x)。

【思路點撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。

【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。

【學生活動】分四人小組,合作探究。

解:(1)x2—9y2=(x+3y)(x—3y);

(5)m2(16x—y)+n2(y—16x)。

=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。

公式法因式分解教案篇十三

3、選擇恰當?shù)姆椒ㄟM行因式分解。

4、應(yīng)用因式分解來解決一些實際問題。

5、體驗應(yīng)用知識解決問題的樂趣。

靈活運用因式分解解決問題。

靈活運用恰當?shù)囊蚴椒纸獾姆椒?,拓展練?、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧。

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。

(7)。2πr+2πr=2π(r+r)因式分解。

2、。規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

分解因式要注意以下幾點:(1)。分解的對象必須是多項式。

(2)。分解的結(jié)果一定是幾個整式的乘積的形式。(3)。要分解到不能分解為止。

4、強化訓練。

教學引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

動畫演示:

場景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

[學生活動:各自測量。]。

鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

講授新課。

找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動畫演示:

場景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學生活動:尋找矩形性質(zhì)。]。

動畫演示:

場景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學生活動;尋找菱形性質(zhì)。]。

動畫演示:

場景四:菱形的性質(zhì)。

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時提出問題,引導(dǎo)學生進行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

[學生活動:積極思考,有同學做躍躍欲試狀。]。

師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形?!?/p>

“有一個角是直角的菱形叫做正方形?!?/p>

“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

試一試把下列各式因式分解:。

(1)。1-x2=(1+x)(1-x)(2)。4a2+4a+1=(2a+1)2。

(3)。4x2-8x=4x(x-2)(4)。2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。

五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

公式法因式分解教案篇十四

3、選擇恰當?shù)姆椒ㄟM行因式分解。

4、應(yīng)用因式分解來解決一些實際問題。

5、體驗應(yīng)用知識解決問題的樂趣。

靈活運用因式分解解決問題。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧。

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式。

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。

(7).2πr+2πr=2π(r+r)因式分解。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程。

分解因式要注意以下幾點:(1).分解的對象必須是多項式。

(2).分解的結(jié)果一定是幾個整式的乘積的形式。(3).要分解到不能分解為止。

4、強化訓練。

試一試把下列各式因式分解:

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+2004被2005整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù)。

五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

公式法因式分解教案篇十五

“整式的乘法”是整式的加減的后續(xù)學習從冪的運算到各種整式的乘法,整章教材都突出了學生的自主探索過程,依據(jù)原有的知識基礎(chǔ),或運用乘法的各種運算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運算的基本法則、兩個主要的乘法公式及因式分解的基本方法學生自己對知識內(nèi)容的探索、認識與體驗,完全有利于學生形成合理的知識結(jié)構(gòu),提高數(shù)學思維能力.利用公式法進行因式分解時,注意把握多項式的特點,對比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。

因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項式乘法公式的逆向變形,它是將一個多項式變形為多項式與多項式的乘積。

2、教學目標。

(1)會推導(dǎo)乘法公式。

(2)在應(yīng)用乘法公式進行計算的基礎(chǔ)上,感受乘法公式的作用和價值。

(3)會用提公因式法、公式法進行因式分解。

(4)了解因式分解的一般步驟。

(5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。

3、重點、難點和關(guān)鍵。

重點:乘法公式的意義、分式的由來和正確運用;用提公因式法和公式法進行因式分解。

難點:正確運用乘法公式;正確分解因式。

關(guān)鍵:正確理解乘法公式和因式分解的意義。

3.讓學生掌握基本的數(shù)學事實與數(shù)學活動經(jīng)驗,減輕不必要的記憶負擔.。

2.1平方差公式1課時。

2.2完全平方公式2課時。

初中優(yōu)秀......

初中(通用13篇)作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,教案有利于教學水平的提高,有助于教研活動的開展。來參考自己需要的教案吧!下面是小編為......

公式法因式分解教案篇十六

教學過程中滲透類比的數(shù)學思想,形成新的知識結(jié)構(gòu)體系;設(shè)置探究式教學,讓學生經(jīng)歷知識的形成,從而達到對知識的深刻理解與靈活應(yīng)用。

學法:自主、合作、探索的學習方式。

在教學活動中,既要提高學生獨立解決問題的能力,又要培養(yǎng)團結(jié)協(xié)作精神,拓展學生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。

公式法因式分解教案篇十七

知識點:

因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

教學目標:

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

考查重難點與常見題型:

考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

教學過程:

多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

如多項式。

其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。

(2)運用公式法,即用。

寫出結(jié)果。

(3)十字相乘法。

(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

(5)求根公式法:如果有兩個根x1,x2,那么。

1、教學實例:學案示例。

2、課堂練習:學案作業(yè)。

3、課堂:

4、板書:

5、課堂作業(yè):學案作業(yè)。

6、教學反思:

公式法因式分解教案篇十八

3、選擇恰當?shù)姆椒ㄟM行因式分解。

5、體驗應(yīng)用知識解決問題的樂趣。

靈活運用恰當?shù)囊蚴椒纸獾姆椒?,拓展練?、3。

一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值。

利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

二、知識回顧。

1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關(guān)系)。

2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.

分解因式要注意以下幾點:(1).分解的對象必須是多項式.

(2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

4、強化訓練。

教學引入。

師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形?,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

動畫演示:

場景一:正方形折疊演示。

師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

[學生活動:各自測量。]。

鼓勵學生將測量結(jié)果與鄰近同學進行比較,找出共同點。

講授新課。

找一兩個學生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

動畫演示:

場景二:正方形的性質(zhì)。

師:這些性質(zhì)里那些是矩形的性質(zhì)?

[學生活動:尋找矩形性質(zhì)。]。

動畫演示:

場景三:矩形的性質(zhì)。

師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

[學生活動;尋找菱形性質(zhì)。]。

動畫演示:

場景四:菱形的性質(zhì)。

師:這說明正方形具有矩形和菱形的全部性質(zhì)。

及時提出問題,引導(dǎo)學生進行思考。

師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

[學生活動:積極思考,有同學做躍躍欲試狀。]。

師:請同學們回想矩形與菱形的`定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

學生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:

“有一組鄰邊相等的矩形叫做正方形?!?/p>

“有一個角是直角的菱形叫做正方形?!?/p>

“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形?!?/p>

師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2。

(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)。

三、例題講解。

例1、分解因式。

(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)。

(3)(4)y2+y+。

例2、分解因式。

4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=。

例3、分解因式。

1、72-2(13x-7)22、8a2b2-2a4b-8b3。

三、知識應(yīng)用。

1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)。

3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2。

四、拓展應(yīng)用。

2、20042+20xx被20xx整除嗎?

3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

五、課堂小結(jié):今天你對因式分解又有哪些新的認識?

公式法因式分解教案篇十九

本周x上午我聽了x老師一節(jié)關(guān)于《運用平方差公式進行因式分解》的公開課,x老師以自己扎實的數(shù)學基本功,細致嚴謹?shù)臄?shù)學解題思路,靈活輕松的師生互動,為我們獻上了一節(jié)優(yōu)質(zhì)的數(shù)學課。

x老師針對本章內(nèi)容所要用上了前面的知識做了細致的.復(fù)習。實現(xiàn)了本章節(jié)知識點的聯(lián)系與復(fù)習回顧,對接下去的學習做了很好的鋪墊。

x老師通過求長方形的面積來引導(dǎo)學生探索、總結(jié)出運用平方差公式進行因式分解的法則,利用數(shù)形結(jié)合,讓學生對這個法則的理解更深入,同時突破了難點,體現(xiàn)了以教師為主導(dǎo)、學生自主探究、討論、合作交流的新課改理念。

x老師通過練習,讓學生觀察步驟,并做出總結(jié)。使學生加深了對知識的理解,學會觀察,發(fā)現(xiàn),總結(jié)知識。最后x老師還給學生編了個解題的順口溜,既方便讓學生記憶,又能鞏固知識。

(1)整節(jié)課老師講得多,學生個別回答較少。

(2)學生的討論與合作學習還需加強,討論問題還不夠深入,應(yīng)讓學生從合作學習中有所提高,從與它人的交流中碰撞出思維的火花。

(3)還需加強的對知識點的認識,比如為什么要學升降冪,是為了結(jié)果的有序,數(shù)學的結(jié)果需要簡潔有序。這樣讓學生很清楚,有目的的學習效果總是比較好的。

【本文地址:http://aiweibaby.com/zuowen/11285809.html】

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔