通過總結(jié),我們可以將散亂的思緒整理成一篇有邏輯性的文章。如何建立良好的人際關(guān)系是每個人都需要面對和解決的問題。如果你還對總結(jié)寫作有些困惑,不妨參考以下小編為大家準(zhǔn)備的總結(jié)范文。
鴿巢問題教學(xué)設(shè)計篇一
1.經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢問題”解決簡單的實際問題。
2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3.通過“鴿巢問題”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
重點:經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”。難點:理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
多媒體課件。
紙杯。
吸管。
一、課前游戲引入。
生:想。
師:我這里有一副撲克牌,我找五位同學(xué)每人抽一張。老師猜。(至少有兩張花色一樣)。
二、通過操作,探究新知。
(一)探究例1。
1、研究3根小棒放進2個紙杯里。
(1)要把3枝小棒放進2個紙杯里,有幾種放法?請同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
(2)反饋:兩種放法:(3,0)和(2,1)。(教師板書)(3)從兩種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)。
(4)“總有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小結(jié):在研究3根小棒放進2個紙杯時,同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個紙杯里放進2根小棒)。
2、研究4根小棒放進3個紙杯里。
(1)要把4根小棒放進3個紙杯里,有幾種放法?請同學(xué)們動手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)從四種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個紙杯里至少有2根小棒)。
(4)你是怎么發(fā)現(xiàn)的?
(5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個紙杯里放進2根小棒”。
師:大家看,全放到一個杯子里,就有四個了。太多了。那怎么樣讓每個杯子里都盡可能少,你覺得應(yīng)該要怎樣放?(小組合作,討論交流)(每個紙杯里都先放進一枝,還剩一枝不管放進哪個紙杯,總會有一個紙杯里至少有2根小棒)(你真是一個善于思想的孩子。)。
(6)這位同學(xué)運用了假設(shè)法來說明問題,你是假設(shè)先在每個紙杯里里放1根小棒,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)。
(8)在探究4枝鉛筆放進3個文具盒的問題,同學(xué)們的方法有兩種,一是。
3、類推:把5枝小棒放進4個紙杯,總有一個紙杯里至少有幾根小棒?為什么?
把6枝小棒放進5個紙杯,總有一個紙杯里至少有幾根小棒?為什么?
把7枝小棒放進6個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?
把100枝小棒放進99個紙杯,是不是總有一個紙杯里至少有幾根小棒?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的小棒比紙杯的數(shù)量多1,總有一個紙杯里至少放進2根小棒。)。
5、小結(jié):剛才我們分析了把小棒放進紙杯的情況,只要小棒數(shù)量多于紙杯數(shù)量時,總有一個紙杯里至少放進2根小棒。
這就是今天我們要學(xué)習(xí)的鴿巢問題,也叫抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?小棒相當(dāng)于我們要準(zhǔn)備放進抽屜的物體,那么紙杯就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個抽屜里放進了2個物體。
小練習(xí):
1、任意13人中,至少有幾人的出生月份相同?
2、任意367名學(xué)生中,至少有幾名學(xué)生,他們在同一天過生日?為什么?
3、任意13人中,至少有幾人的屬相相同?”
6、剛才我們研究的是小棒數(shù)比紙杯多1的情況,如果小棒比紙杯數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個紙杯里至少有2根小棒?!?/p>
鴿巢問題教學(xué)設(shè)計篇二
鴿巢問題是我們數(shù)學(xué)中比較有意思且在生活中運用比較廣泛的問題。因此,在錄制一師一優(yōu)課時我想到了給學(xué)生講這一節(jié)課,使學(xué)生更加清楚的認(rèn)識到數(shù)學(xué)是源于生活,并運用于生活中的。
鴿巢問題又可以叫做抽屜原理,是一種在生活中常見的數(shù)學(xué)原理,許多游戲的設(shè)置都運用了該原理,例如搶凳子游戲,紙牌游戲等。因此,在講課開始我先用紙牌游戲中引出今天的鴿巢問題,讓學(xué)生帶著好奇心來學(xué)習(xí)本節(jié)課內(nèi)容。接著我出示例題,先找一位同學(xué)演示3支筆放進2個筆筒中應(yīng)該怎么放,并記錄下來,使學(xué)生明白小組應(yīng)該怎樣進行活動并記錄。接著出示課本例1的題目,學(xué)生小組內(nèi)通過剛才的方法很輕易的就找出一共有幾種方法,在找一位學(xué)生進行演示加強大家的認(rèn)識。我有介紹了剛才學(xué)生們實驗的方法叫做枚舉法。并通過觀察引出概念總有一個筆筒里至少有2支鉛筆。接著讓學(xué)生們轉(zhuǎn)換思想求實有沒有更簡單的方法得出結(jié)論,學(xué)生通過實驗和討論得出可以用平均分的方法得到同樣的結(jié)論。并把其轉(zhuǎn)化為算式。
接著增加鉛筆和筆筒的個數(shù)仍能得到相同的結(jié)論,由此學(xué)生發(fā)現(xiàn)當(dāng)鉛筆數(shù)比筆筒數(shù)多1時,總有一個筆筒至少有2支鉛筆的結(jié)論。把鉛筆和筆筒換成其他物品學(xué)生還能相似的結(jié)論,說明學(xué)生已經(jīng)可以學(xué)移致用了。之后介紹鴿巢問題的發(fā)現(xiàn)者,增加學(xué)生的知識面。
最后,我又引到游戲揭示答案,再通過幾道層次遞進的題目的練習(xí),使學(xué)生能夠靈活運用鴿巢問題,從而達到本節(jié)課的教學(xué)目的。
鴿巢問題教學(xué)設(shè)計篇三
1.在操作、觀察、比較的過程中初步了解抽屜原理,并運用抽屜原理的知識解決簡單的實際問題。
重點難點 經(jīng)歷抽屜原理的.探究過程,并對抽屜原理的問題模式化
學(xué)生筆記(教師點撥) 學(xué) 案 內(nèi) 容
(1)自學(xué)例1
把4枝鉛筆放進3個文具盒中,可以怎么放?有幾種情況?
(1) 學(xué)生思考各種放法。
(2) 第一種放法: 第二種放法:
第三種放法: 第四種放法:
教學(xué)過程:
5÷2=2……1 (至少放3本)
7÷2=3……1 (至少放4本)
9÷2=4……1 (至少放5本)
1、提出問題。
不管怎么放,總有一個文具盒里至少放進( )鉛筆。為什么?
如果每個文具盒只放( )鉛筆,最多放( )枝,剩下()枝還要放進其中的一個文具盒,所以至少有()鉛筆放進同一個文具盒。
(1) 說一說你有什么體會。
二自學(xué)例2
1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾體書?
2、擺一擺,有幾種放法。
不難得出,不管怎么放總有一個抽屜至少放進( )本書。
3、說一說你的思維過程。
如果每個抽屜放( )本書,共放了( )本書。剩下的1本還要放進其中一個抽屜,所以至少有1個抽屜放進3本書。
如果一共有7本書會怎樣呢?9本呢?
4. 你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?
總結(jié):先平均分配,再把余數(shù)進行分配,得出的就是一個抽屜至少放進的本數(shù)。
1. 做一做。
(1)7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個鴿舍里。為什么?
(2) 說出想法。
如果每個鴿舍只飛進( )鴿子,最多飛回( )鴿子,剩下()鴿子還要飛進其中的一個鴿舍或分別飛進其中的兩個鴿舍。所以至少有2只鴿子飛進同一個鴿舍。
2. 做一做
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
想:每個鴿舍飛進( )鴿子,共飛進( )鴿子。剩下( )鴿子還要飛進其中的1個或2個鴿舍,所以,至少有( )鴿子要飛進同一個鴿舍里。
鴿巢問題教學(xué)設(shè)計篇四
審定人教版六年級下冊數(shù)學(xué)《數(shù)學(xué)廣角鴿巢問題》,也就是原實驗教材《抽屜原理》。
設(shè)計理念。
《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數(shù)學(xué)的一個基本原理,最先是由德國數(shù)學(xué)家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€筒至少放進2支筆”這句話對于學(xué)生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個筒至少放進2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動者,特別是這種原理的初步認(rèn)識,不應(yīng)該是教師牽著學(xué)生去認(rèn)識,而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。
所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“鴿巢”和“物體”。
教材分析。
《鴿巢問題》這是一類與“存在性”有關(guān)的問題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“鴿巢問題”。
通過第一個例題教學(xué),介紹了較簡單的“鴿巢問題”:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢至少放進2個物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個筒至少放進2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。
第二個例題是在例1的基礎(chǔ)上說明:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢里至少放進(商+1)個物體。因此我認(rèn)為例2的目的是使學(xué)生進一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過程。
學(xué)情分析。
可能有一部分學(xué)生已經(jīng)了解了鴿巢問題,他們在具體分得過程中,都在運用平均分的方法,也能就一個具體的問題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒有接觸,所以他們可能會認(rèn)為至少的情況就應(yīng)該是“1”。
教學(xué)目標(biāo)。
1.通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建?!彼枷?。
2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進行思考和推理的能力。
3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點。
經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
教學(xué)難點。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
教學(xué)過程。
一、游戲激趣,初步體驗。
游戲規(guī)則是:請這四位同學(xué)從數(shù)字1.2.3中任選一個自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
二、操作探究,發(fā)現(xiàn)規(guī)律。
1、具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個筒,可以怎么放?請同學(xué)們運用實物放一放,看有幾種擺放方法?
(1)學(xué)生匯報結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個筒里至少放進了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆?!?。
設(shè)計意圖:鴿巢問題對于學(xué)生來說,比較抽象,特別是“不管怎么放,總有一個筒里至少放進了2支筆?!边@句話的理解。所以通過具體的操作,枚舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的筒,理解“總有一個筒里至少放進了2支筆”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,訓(xùn)練學(xué)生的邏輯思維能力。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?
2、假設(shè)法,用“平均分”來演繹“鴿巢問題”。
1、思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報。
2、匯報想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放4支,剩下的.1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3、學(xué)生操作演示分法,明確這種分法其實就是“平均分”。
三、探究歸納,形成規(guī)律。
1、課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應(yīng)該怎樣列式“平均分”。
設(shè)計意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。
根據(jù)學(xué)生回答板書:5÷2=2……1。
(學(xué)情預(yù)設(shè):會有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
至少數(shù)=商+1。
2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(商+1)個物體”的結(jié)論。
板書:至少數(shù)=商+1。
設(shè)計意圖:對規(guī)律的認(rèn)識是循序漸進的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2支”得到“至少商+余數(shù)”個,再到得到“商+1”的結(jié)論。
師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
四、運用規(guī)律解決生活中的問題。
課件出示習(xí)題.:
1.三個小朋友同行,其中必有幾個小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3.從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
……。
設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情。
五、課堂總結(jié)。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請學(xué)生暢談,師總結(jié)。
鴿巢問題教學(xué)設(shè)計篇五
1、教學(xué)內(nèi)容:人教版義務(wù)教育教科書六年級下冊第68頁例1及做一做。
2、教材地位及作用。
本單元用直觀的方法,介紹了“鴿巢問題”的兩種形式,并安排了很多具體問題和變式,幫助學(xué)生加深理解,學(xué)會利用“鴿巢問題”解決簡單的實際問題。實際上,通過“說理”的方式來理解“鴿巢問題”的過程就是一種數(shù)學(xué)證明的雛形,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。
(二),才能靈活運用這一原理解決各種實際問題。
要創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主體性。
2、思維特點:知識掌握上,六年級的學(xué)生對于總結(jié)規(guī)律的方法接觸比較少,尤其對于“數(shù)學(xué)證明”。因此教師要耐心細(xì)致的引導(dǎo),重在讓學(xué)生經(jīng)歷知識發(fā)生、發(fā)展的過程,而不是生搬硬套,只求結(jié)論,要讓學(xué)生不但知其然,更要知其所以然。
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和教材內(nèi)容以及學(xué)生的學(xué)情,我確定本節(jié)課學(xué)習(xí)目標(biāo)如下:
知識性目標(biāo):初步了解“鴿巢問題”的特點,理解“鴿巢問題”的含義,會用此原理解決簡單的實際問題。
能力性目標(biāo):經(jīng)歷探究“鴿巢問題”的學(xué)習(xí)過程,通過實踐操作,發(fā)現(xiàn)、歸納、總結(jié)原理,滲透數(shù)形結(jié)合的思想。
情感性目標(biāo):通過用“鴿巢問題”解決簡單的實際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,感受到數(shù)學(xué)的魅力。
教學(xué)重點:引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“鴿巢問題”。
教學(xué)難點:找出“鴿巢問題”解決的竅門進行反復(fù)推理。
教法上本節(jié)課主要采用了設(shè)疑激趣法、講授法、實踐操作法。根據(jù)六年級學(xué)生的理解能力和思維特征,為使課堂生動、高效,課堂始終以設(shè)疑及觀察思考討論貫穿于整個教學(xué)環(huán)節(jié)中,采用師生互動的教學(xué)模式進行啟發(fā)式教學(xué)。
學(xué)法上主要采用了自主合作、探究交流的學(xué)習(xí)方式。體現(xiàn)數(shù)學(xué)知識的形成過程,讓學(xué)生在自己的經(jīng)驗中通過觀察,實驗,猜測,交流等數(shù)學(xué)活動形成良好的數(shù)學(xué)思維習(xí)慣,提高解決問題的能力,感受數(shù)學(xué)學(xué)習(xí)的樂趣。
在教學(xué)設(shè)計上,我本著“以學(xué)定教”的設(shè)計理念,把教學(xué)過程分四環(huán)節(jié)進行:設(shè)疑導(dǎo)入,激發(fā)興趣——自主操作,探究新知——歸納小結(jié),形成規(guī)律——回歸生活,靈活應(yīng)用。
在導(dǎo)入部分,通過抽撲克牌“魔術(shù)”,激發(fā)學(xué)生的興趣,引入新知。
根據(jù)學(xué)生學(xué)習(xí)的困難和認(rèn)知規(guī)律,我在探究部分設(shè)計了三個層次的數(shù)學(xué)活動。
(一)實物操作,初步感知。
學(xué)生通過例1要求通過“把4枝鉛筆放入3個筆筒”的實際操作,解決3個問題:
1、怎樣放?
重點是讓學(xué)生明確如果只是放入每個筆筒中的枝數(shù)的排序不一樣,應(yīng)視為一種分法,并引導(dǎo)其有序思考,為后面枚舉法的運用掃清障礙。
2、共有幾種放法?
這里主要是孕伏對“不管怎樣放”的理解。
3、認(rèn)識“總有一個”的意義。
通過觀察筆筒中鉛筆枝數(shù),找出4種放法中鉛筆枝數(shù)最多的筆筒中枝數(shù)分別有哪幾種情況,理解“總有一個”的含義,得到一個初步的印象:不管怎么放,總有一個筆筒放的枝數(shù)是最多的,分別是2枝,3枝和4枝。
(二)脫離具體操作,由形抽象到數(shù)。
通過“思考:把5枝鉛筆放入4個筆筒,又會出現(xiàn)怎樣的情況?”由學(xué)生直接完成表格,達成三個目的:
1、理解“至少”的含義,準(zhǔn)確表述現(xiàn)象。
(1)通過觀察表格中枝數(shù)最多的筆筒里的數(shù)據(jù),讓學(xué)生在“最多”中找“最少”。
(2)學(xué)會用“至少”來表達,概括出“5枝放4盒”、“4枝放3盒”時,總有一個筆筒里至少放入2枝鉛筆的結(jié)論。
2、理解“平均分”的思路,知道為什么要“平均分”。抓住最能體現(xiàn)結(jié)論的一種情況,引導(dǎo)學(xué)生理解怎樣很快知道總有一個筆筒里至少是幾枝的方法——就是按照筆筒數(shù)平均分,只有這樣才能讓最多的筆筒里枝數(shù)盡可能少。
3、抽象概括,小結(jié)現(xiàn)象。
通過“4枝放入3個筆筒”、”5枝放入4個筆筒”等不同的實例讓學(xué)生較充分地感受、體驗、發(fā)現(xiàn)相同的現(xiàn)象,讓學(xué)生抽象概括出“當(dāng)物體數(shù)比抽屜數(shù)多1時,不管怎么放,總有一個抽屜至少放入2個物體”,初步認(rèn)識鴿巢原理。
(三)學(xué)生自選問題探究。
首先設(shè)下疑問:“如果物體數(shù)不止比抽屜數(shù)多1,不管怎樣放,總有一個鉛筆盒中至少要放入幾枝鉛筆?”這一層次請學(xué)生理解當(dāng)余數(shù)不是1時,要經(jīng)歷兩次平均分,第一次是按抽屜的平均分,第二次是按余下的枝數(shù)平均分,只有這樣才能達到讓“最多的盒子里枝數(shù)盡可能少”的目的。
在學(xué)生經(jīng)歷了真實的探究過程后,我將本節(jié)課研究過的所有實例通過課件進行總體呈現(xiàn)。讓學(xué)生通過比較,總結(jié)出抽屜原理中最簡單的情況:物體數(shù)不到抽屜數(shù)的2倍時,不管怎樣放,總有一個抽屜中至少要放入2個物體。
研究的問題來源于生活,還要還原到生活中去。
在教學(xué)的最后,請學(xué)生用這節(jié)課學(xué)的鴿巢原理解釋課始老師的魔術(shù)問題,進行首尾的呼應(yīng);再讓學(xué)生應(yīng)用“鴿巢原理”解決的生活中簡單有趣的實際問題,激發(fā)學(xué)生的興趣,進一步培養(yǎng)學(xué)生的“模型”思想,讓學(xué)生能正確地找出問題中什么是待分的“物體”,什么是“抽屜”,讓學(xué)生體會抽屜的形式是多種多樣的。同時也讓學(xué)生感受到數(shù)學(xué)知識在生活中的應(yīng)用,感受到數(shù)學(xué)的魅力。
鴿巢問題教學(xué)設(shè)計篇六
1、借助直觀學(xué)具演示,經(jīng)歷探究過程。教師注重讓學(xué)生在操作中,經(jīng)歷探究過程,感知、理解鴿巢問題。
2、教師注重培養(yǎng)學(xué)生的“模型”思想。通過一系列的操作活動,學(xué)生對于枚舉法和假設(shè)法有一定的認(rèn)識,加以比較,分析兩種方法在解決鴿巢問題的優(yōu)超性和局限性,使學(xué)生逐步學(xué)會運用一般性的數(shù)學(xué)方法來思考問題。
3、在活動中引導(dǎo)學(xué)生感受數(shù)學(xué)的魅力。本節(jié)課的“鴿巢問題”的建立是學(xué)生在觀察、操作、思考與推理的基礎(chǔ)上理解和發(fā)現(xiàn)的,學(xué)生學(xué)的積極主動。特別以游戲引入,又以游戲結(jié)束,既調(diào)動了學(xué)生學(xué)習(xí)的積極性,又學(xué)到了抽屜原理的知識,同時鍛煉了學(xué)生的思維。在整節(jié)課的教學(xué)活動中使學(xué)生感受了數(shù)學(xué)的魅力。
鴿巢問題教學(xué)設(shè)計篇七
1.通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建?!彼枷?。
2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進行思考和推理的能力。
3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點。
經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
教學(xué)難點。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
教學(xué)過程。
一、游戲激趣,初步體驗。
游戲規(guī)則是:請這四位同學(xué)從數(shù)字1.2.3中任選一個自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
二、操作探究,發(fā)現(xiàn)規(guī)律。
1.具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個筒,可以怎么放?請同學(xué)們運用實物放一放,看有幾種擺放方法?
(1)學(xué)生匯報結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個筒里至少放進了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆。”)。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?
2.假設(shè)法,用“平均分”來演繹“鴿巢問題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考――同桌交流――匯報。
2匯報想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放4支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實就是“平均分”。
三、探究歸納,形成規(guī)律。
1.課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]。
根據(jù)學(xué)生回答板書:5÷2=2……1。
(學(xué)情預(yù)設(shè):會有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(商+1)個物體”的結(jié)論。
板書:至少數(shù)=商+1。
師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
四、運用規(guī)律解決生活中的問題。
課件出示習(xí)題.:
1.三個小朋友同行,其中必有幾個小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3.從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
……。
[設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情。]。
五、課堂總結(jié)。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請學(xué)生暢談,師總結(jié)。
鴿巢問題教學(xué)設(shè)計篇八
課堂上,我首先采用學(xué)生搶凳子游戲?qū)?,使學(xué)生初步感受總是有一個凳子上要坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,也使學(xué)生集中注意力,把心思馬上放到課堂上,讓學(xué)生覺得這節(jié)課探究的問題既好玩又有意義,為后面教與學(xué)的活動做了鋪墊。但這部分內(nèi)容真正理解對于學(xué)生來說有一定的難度。在教學(xué)中我通過實際案例培養(yǎng)學(xué)生有根據(jù)、有條理地進行思考和推理的能力,從而解決實際問題,初步感受數(shù)學(xué)的魅力。本堂課注重為學(xué)生提供自主探索的空間,引導(dǎo)學(xué)生通過探索,初步了解“鴿巢原理”,總結(jié)“鴿巢原理”的規(guī)律,會用“鴿巢原理”解決實際問題。
在本節(jié)課中,我非常注重學(xué)生的自主探索精神,讓學(xué)生在學(xué)習(xí)中,經(jīng)歷猜想、驗證、推理、應(yīng)用的過程。
1、采用枚舉法,讓學(xué)生通過小組合作把4本書放入3個抽屜中的所有情況都列舉出來,然后通過學(xué)生匯報四種不同的排放情況,運用直觀的方式,發(fā)現(xiàn)并描述、理解最簡單的“鴿巢原理”即“書本數(shù)比抽屜數(shù)多1時,總有一個抽屜里至少有2本書”。進而介紹這種擺放的'方法是我們數(shù)學(xué)中常用的一種方法即枚舉法。
2、讓學(xué)生借助直觀操作發(fā)現(xiàn),把書盡量多的“平均分”給各個抽屜,看每個抽屜能分到多少本書,剩下的書不管放到哪個抽屜里,總有一個抽屜比平均分得的本數(shù)多1本,可以用有余數(shù)的除法這一數(shù)學(xué)規(guī)律來表示。
3、大量例舉之后,再引導(dǎo)學(xué)生總結(jié)歸納這一類“抽屜問題”的一般規(guī)律,讓學(xué)生借助直觀操作、觀察、表達等方式,讓學(xué)生經(jīng)歷從不同的角度認(rèn)識鴿巢原理。
4、對“某個抽屜至少有書的本數(shù)”是除法算式中的“商+1”,而不是“商+余數(shù)”,適時挑出有針對性問題進行交流、引導(dǎo)、討論,使學(xué)生從本質(zhì)上理解了“抽屜原理”,總結(jié)出“抽屜原理”中總有一個抽屜里至少有的本數(shù)等于“商+1”。
5、本課教學(xué)中,學(xué)生對“總是”和“至少”的理解上沒有進行結(jié)合具體的實例進行引導(dǎo),學(xué)生在學(xué)習(xí)時理解有一些空難。
6、在數(shù)學(xué)語言表述上應(yīng)該更加準(zhǔn)確,使學(xué)生聽起來更加明白。
在這堂課的難點突破處,也就是讓學(xué)生借助直觀操作發(fā)現(xiàn),把書盡量多的“平均分”到各個抽屜,看每個抽屜能分到多少本書,剩下的書不管放到哪個抽屜里,總有一個抽屜比平均分得的本數(shù)多1本。教學(xué)知識不光是讓學(xué)生按照公式來套用公式,這樣很容易造成學(xué)生的思維定勢,所以在練習(xí)中,讓學(xué)生充分說理的基礎(chǔ)上,明確把什么當(dāng)作“抽屜數(shù)”,把什么當(dāng)作“物體數(shù)”并進行反復(fù)練習(xí)。
在這節(jié)課里部分學(xué)生判斷不出誰是“物體”,誰是“抽屜”。因此,在今后的教學(xué)中,多下些功夫,以求在課堂上讓學(xué)生更好地理解、消化所授知識。課后還要讓多做相關(guān)的練習(xí)加以鞏固。
鴿巢問題教學(xué)設(shè)計篇九
教科書第68頁例1。
(一)知識與技能:通過數(shù)學(xué)活動讓學(xué)生了解鴿巢原理,學(xué)會簡單的鴿巢原理分析方法。
(二)過程與方法:結(jié)合具體的實際問題,通過實驗、觀察、分析、歸納等數(shù)學(xué)活動,讓學(xué)生通過獨立思考與合作交流等活動提高解決實際問題的能力。
(三)情感態(tài)度和價值觀:在主動參與數(shù)學(xué)活動的過程中,讓學(xué)生切實體會到探索的樂趣,讓學(xué)生切實體會到數(shù)學(xué)與生活的緊密結(jié)合。
教學(xué)重點:經(jīng)歷鴿巢問題的探究過程,初步了解鴿巢原理,會用鴿巢原理解決簡單的實際問題。
教學(xué)難點:通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
多媒體課件。
(一)候課閱讀分享:
同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
(二)激情導(dǎo)課。
好,咱們班人數(shù)已到齊,從今天開始,我們學(xué)習(xí)第五單元鴿巢問題,這節(jié)課通過數(shù)學(xué)活動我們來了解鴿巢原理,學(xué)會簡單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開始上課。
(三)民主導(dǎo)學(xué)。
1、請同學(xué)們先來看例1。把4支鉛筆放進3個筆筒中,不管怎么放,總有1個筆筒里至少有2只鉛筆。
請你再把題讀一次,這是為什么呢?
對總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說最少有兩支鉛筆。或者是說,鉛筆的支數(shù)要大于或等于兩支。
課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進3個筆筒中有幾種擺法呢?”這兒老師收集到了各組組長整理出的大家的各種擺法,我們一起來看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無論是擺還是寫都是把方法枚舉出來,在數(shù)學(xué)中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個情況呢?
方法二:用“假設(shè)法”證明。
對,我們可以這樣想,如果在每個筆筒中放1支,先放3支,剩下的1支就要放進其中的一個筆筒。這時無論放在哪個筆筒,那個筆筒中就有2支,所以總有一個筆筒中至少放進2支鉛筆。(平均分)。
方法三:列式計算。
你能用算式表示這個方法嗎?
學(xué)生列出式子并說一說算式中商與余數(shù)各表示什么意思?
2、把5支鉛筆放進4個筆筒,總有一個筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設(shè)法、列式計算。
3、100支鉛筆,放進99個筆筒,總有一個筆筒至少要放進多少支鉛筆呢?
還能有枚舉法嗎?對,不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時候用起來比較麻煩??梢杂眉僭O(shè)法和列式計算。
4、表格中通過整理,總結(jié)規(guī)律。
你發(fā)現(xiàn)了什么規(guī)律?
當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時,至少數(shù)等于2“商+1”。
經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我把我們的這一發(fā)現(xiàn),稱為筆筒問題。但其實最早發(fā)現(xiàn)這個規(guī)律的不是我們,而是德國的一個數(shù)學(xué)家“狄里克雷”。
(四)檢測導(dǎo)結(jié)。
好,我們做幾道題檢測一下你們的學(xué)習(xí)效果。
1、隨意找13位老師,他們中至少有2個人的屬相相同。為什么?
3、5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?
(五)全課總結(jié)今天你有什么收獲呢?
(六)布置作業(yè)。
作業(yè):兩導(dǎo)兩練第70頁、71頁實踐應(yīng)用1、4題。
鴿巢問題教學(xué)設(shè)計篇十
1.1知識與技能:
1.初步了解“抽屜原理”,會運用“抽屜原理”解決簡單的實際問題或解釋相關(guān)的現(xiàn)象。2.通過操作、觀察、比較、推理等數(shù)學(xué)活動,引導(dǎo)學(xué)生理解并掌握這一類“抽屜原理”的一般規(guī)律。
1.2過程與方法:
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,體會比較的學(xué)習(xí)方法。
1.3情感態(tài)度與價值觀:
感受數(shù)學(xué)的魅力,提高學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用意識,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
2.教學(xué)重點/難點。
2.1教學(xué)重點。
經(jīng)歷抽屜原理的探究過程,理解抽屜原理,靈活運用抽屜原理解決生活中的簡單問題。
2.2教學(xué)難點。
理解“總有”、“至少”,構(gòu)建“抽屜原理”的數(shù)學(xué)模型,并對一些簡單的實際問題加以模型化。
3.教學(xué)用具。
多媒體課件,鉛筆,筆筒,一副撲克牌。
4.標(biāo)簽。
教學(xué)過程。
一、開門見山,引入課題。
學(xué)生提出問題:什么是抽屜原理?怎樣研究抽屜原理?抽屜原理有什么用?等等。師:同學(xué)們都很愛提問題,也很會提問題,這節(jié)課我們就帶著這些問題來研究。
二、自主探究,構(gòu)建模型。
1.教學(xué)例1,初步感知,體驗方法,概括規(guī)律。
師:我們先從簡單的例子入手,請看,如果把4個小球放進3個抽屜里,我可以肯定地說,不管怎么放,總有一個抽屜里至少放2個小球。
稍加停頓。
師:“總有”是什么意思?
生:一定有。
師:“至少放2個小球”你是怎樣理解的?
生:最少放2個小球,也可以放3個、4個。
師:2個或比2個多,我們就說“至少放2個小球”。
師:老師說的這句話對嗎?我們得需要驗證,怎么驗證呢?華羅庚說過不懂就畫圖,下面請同學(xué)們用圓形代替小球,用長方形代替抽屜,畫一畫,看有幾種不同的方法。也可以尋求其他的方法驗證,聽明白了嗎?開始吧!
學(xué)生活動,教師巡視指導(dǎo)。
匯報交流。
師:哪位同學(xué)愿意把你的方法分享給大家?
一生上前匯報。
生1:可以在第一個抽屜里放4個小球,其他兩個抽屜空著。
師:這4個小球一定要放在第一個抽屜里嗎?
生:不一定,也可以放在其他兩個抽屜里。
師:看來不管怎么放,總有一個抽屜里放進4個小球。這種放法可以簡單的記作4,0,0。不好意思,接著介紹吧。
生:第二種方法是第一個抽屜里放3個小球,第二個抽屜里放1個,第三個抽屜空著,也就是3,1,0;第三種方法是2,2,0;第四種方法是2,1,1。
(此環(huán)節(jié)可以先讓一名學(xué)生匯報,其他學(xué)生補充、評價)。
師:他找到了4種不同的方法,誰來評一評?
生2:他找的很全,并且排列的有序。
師:除了這4種放法,還有沒有不同的放法?(沒有)謝謝你的精彩展示,請回??磥?,把4個小球放進3個抽屜里,就有這4種不同的方法。同學(xué)們真不簡單,一下子就找到了4種放法。
出示課件,展示4種方法。
生:第一種放法有一個抽屜里放4個,大于2,符合至少2個,第二種放法有一個抽屜里放3個,也大于2,符合至少2個,第三種放法有一個抽屜里放2個,符合至少2個,第四種放法有一個抽屜里放2個,符合至少2個。所以,總有一個抽屜里至少放兩個小球。
師:說得有理有據(jù)。誰愿意再解釋解釋?(再找一名學(xué)生解釋)。
師:原來呀!這兩位同學(xué)關(guān)注的都是每種方法當(dāng)中放的最——多的抽屜,分別放了幾個小球?(4個、3個、2個、2個)最少放了幾個?(2個),最少2個,有的超過了2個,我們就說至少2個。確實,不管怎么放,我們都找到了這樣的一個抽屜,里面至少放2個小球。看來,老師的猜測對不對?(對)是正確的!
生1:把小球分散地放,每個抽屜里先放1個小球?剩下的1個小球任意放在其中的一個抽屜里,這樣總有一個抽屜里至少放了兩個小球。
生2:先把小球平均放,余下的1個小球不管放在哪個抽屜里,一定會出現(xiàn)總有一個抽屜里至少放了2個小球。
師:每個抽屜里先放1個小球,也就是我們以前學(xué)過的怎么分?
生:平均分。
師:為什么要先平均分?
生:先平均分,就能使每個抽屜里的小球放得均勻,都比較少,再把余下的1個小球任意放在其中的一個抽屜中,這樣一定會出現(xiàn)“總有一個抽屜至少放了2個小球”。
課件演示。
3=1……1,1+1=2。生:4÷。
3=1……1,1+1=2教師隨機板書:4÷。
師:這兩個“1”表示的意思一樣嗎?
生:不一樣,第一個“1”表示每個抽屜里分得的1個小球,第二個“1”表示剩下的那個小球,可以放在任意一個抽屜里。
師:第一個“1”就是先分得的1個小球,也就是除法中的商,第二個“1”是剩下的1個小球,可以任意放在其中的一個抽屜中。瞧,用算式來表示多么地簡潔明了。
生:第四種放法出現(xiàn)的情況。
師:你認(rèn)為用列舉法和假設(shè)法進行驗證,哪種方法比較簡便?為什么?
生:假設(shè)法,列舉法需要把所有的情況都一一列舉出來,假設(shè)法只需要研究一種情況,并且可以用算式簡明地表示出來。
生:2個,先往每個抽屜里放一個小球,這樣還剩下1個,剩下的1個小球任意放在一個其中的一個抽屜里,這樣,不管怎么放,總有一個抽屜里至少放2個小球。
師:把6個小球放進5個抽屜里,總有一個抽屜里至少放幾個小球呢?
5=1……1,1+1=2,還是總有一個抽屜里至少放2個小球。生:6÷。
師:把7個小球放進6個抽屜里呢?
生:總有一個抽屜里至少放2個小球。
師:接著往后想,你能繼續(xù)說嗎?
生1:小球個數(shù)和抽屜個數(shù)都依次增加1,總有一個抽屜里至少放的小球個數(shù)都是2.生2:當(dāng)小球的個數(shù)比抽屜數(shù)多1時,不管怎么放,總有一個抽屜里至少放2個小球。師:你們真善于概括總結(jié)!
2.教學(xué)例2,深入研究,提升思維,構(gòu)建模型。
師:剛才我們研究了小球數(shù)比抽屜數(shù)多1時,總有一個抽屜至少放2個小球,當(dāng)小球數(shù)比抽屜數(shù)多2、多3,甚至更多,又會出現(xiàn)什么情況呢?想不想繼續(xù)研究?(想)。
5=1……2,1+2=3。生1:7÷。
師:有不同意見嗎?
5=1……2,1+1=2。生2:7÷。
5=1……2,不同點是一位同學(xué)認(rèn)師:出現(xiàn)了兩種不同的聲音,這兩位同學(xué)都是用7÷。
生3:我贊同1+1=2。因為余下的2個還要分到不同的抽屜里,所以總有一個抽屜至少放2個小球。
鴿巢問題教學(xué)設(shè)計篇十一
《鴿巢問題》既鴿巢原理又稱抽屜原理,它是組合數(shù)學(xué)的一個基本原理,最先是由德國數(shù)學(xué)家狄利克雷明確提出來的,因此,也稱為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€筒至少放進2支筆”這句話對于學(xué)生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個筒至少放進2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動者,特別是這種原理的初步認(rèn)識,不應(yīng)該是教師牽著學(xué)生去認(rèn)識,而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“鴿巢”和“物體”。
《鴿巢問題》這是一類與“存在性”有關(guān)的問題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們在同一個月過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“鴿巢問題”。
通過第一個例題教學(xué),介紹了較簡單的“鴿巢問題”:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢至少放進2個物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個筒至少放進2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過前一個例題的兩個層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡單的具體問題中解釋證明。
第二個例題是在例1的基礎(chǔ)上說明:只要物體數(shù)比鴿巢數(shù)多,總有一個鴿巢里至少放進(商+1)個物體。因此我認(rèn)為例2的目的是使學(xué)生進一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過程。
可能有一部分學(xué)生已經(jīng)了解了鴿巢問題,他們在具體分得過程中,都在運用平均分的方法,也能就一個具體的問題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒有接觸,所以他們可能會認(rèn)為至少的情況就應(yīng)該是“1”。
1、通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建?!彼枷?。
2、經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進行思考和推理的能力。
3、通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
游戲規(guī)則是:請這四位同學(xué)從數(shù)字1.2.3中任選一個自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
1、具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個筒,可以怎么放?請同學(xué)們運用實物放一放,看有幾種擺放方法?
(1)學(xué)生匯報結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個筒里至少放進了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆?!?。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?
2、假設(shè)法,用“平均分”來演繹“鴿巢問題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報。
2匯報想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放4支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實就是“平均分”。
1、課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]。
根據(jù)學(xué)生回答板書:5÷2=2……1。
(學(xué)情預(yù)設(shè):會有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2、師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(商+1)個物體”的結(jié)論。
板書:至少數(shù)=商+1。
師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
課件出示習(xí)題.:
1、三個小朋友同行,其中必有幾個小朋友性別相同。
2、五年一班共有學(xué)生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3、從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
[設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情。]。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請學(xué)生暢談,師總結(jié)。
鴿巢問題教學(xué)設(shè)計篇十二
“鴿巢”問題就是“抽屜原理”,教材通過三個例題來呈現(xiàn)本章知識,“鴿巢”問題教學(xué)反思。例1:本例描述“抽屜原理”的最簡單的情況,例2:本例描述“抽屜原理”更為一般的形式,例3:跟之前教材的編排是一樣的,是抽屜原理的一個逆向的應(yīng)用。本節(jié)內(nèi)容實際上是一種解決某種特定結(jié)構(gòu)的數(shù)學(xué)或生活問題的模型,體現(xiàn)了一種數(shù)學(xué)的思想方法。讓學(xué)生經(jīng)歷將具體問題數(shù)學(xué)化的過程,初步形成模型思想,體會和理解數(shù)學(xué)與外部世界的緊密聯(lián)系,發(fā)展抽象能力、推理能力和應(yīng)用能力,是課標(biāo)的重要要求。
興趣是學(xué)習(xí)最好的老師。所以在本節(jié)課我認(rèn)真鉆研教材,吃透教材,盡量找到好的方法引課,在網(wǎng)上搜索了一個較好的引課設(shè)計,就照搬了:“同學(xué)們:在上新課之前,我們來做個“搶凳子”游戲怎么樣?想?yún)⑴c這個游戲的請舉手。叫舉手的一男一女兩個同學(xué)上臺,然后問,老師想叫三位同學(xué)玩這個游戲,但是現(xiàn)在已有兩個,你們說最后一個是叫男生還是女生呢?”同學(xué)們回答后,老師就說:“不管是男生還是女生,總有二個同學(xué)的性別是一樣的,你們同意嗎?”并通過三人“搶凳子”游戲得出不管怎樣搶“總有一根凳子至少有兩個同學(xué)”。借機引入本節(jié)課的重點“總有……至少……”。這樣設(shè)計使學(xué)生在生動、活潑的數(shù)學(xué)活動中主動參與。
鴿巢問題教學(xué)設(shè)計篇十三
1.通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢問題”,會用“鴿巢原理”解決簡單的實際問題。滲透“建?!彼枷?。
2.經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進行思考和推理的能力。
3.通過“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
經(jīng)歷“鴿巢問題”的探究過程,初步了解“鴿巢原理”。
教學(xué)難點。
理解“鴿巢問題”,并對一些簡單實際問題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
教學(xué)過程。
一、游戲激趣,初步體驗。
游戲規(guī)則是:請這四位同學(xué)從數(shù)字1.2.3中任選一個自己喜歡的數(shù)字寫在手心上,寫好后,握緊拳頭不要松開,讓老師猜。
二、操作探究,發(fā)現(xiàn)規(guī)律。
1.具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個筒,可以怎么放?請同學(xué)們運用實物放一放,看有幾種擺放方法?
(1)學(xué)生匯報結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個筒里至少放進了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會說,“不管怎么放,總有一個筒里至少放進了2支筆?!?。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個結(jié)論的方法呢?
2.假設(shè)法,用“平均分”來演繹“鴿巢問題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考――同桌交流――匯報。
2匯報想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個筒里放1支筆,最多放4支,剩下的1支不管放進哪一個筒里,總有一個筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實就是“平均分”。
三、探究歸納,形成規(guī)律。
1.課件出示第二個例題:5只鴿子飛回2個鴿巢呢?至少有幾只鴿子飛進同一個鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過程。]。
根據(jù)學(xué)生回答板書:5÷2=2……1。
(學(xué)情預(yù)設(shè):會有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書:至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2.師依次創(chuàng)設(shè)疑問:7只鴿子飛回5個鴿巢呢?8只鴿子飛回5個鴿巢呢?9只鴿子飛回5個鴿巢呢?(根據(jù)回答,依次板書)。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書,同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個鴿巢里至少放進(商+1)個物體”的結(jié)論。
板書:至少數(shù)=商+1。
師過渡語:同學(xué)們的這一發(fā)現(xiàn),稱為“鴿巢問題”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用。“鴿巢原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
四、運用規(guī)律解決生活中的問題。
課件出示習(xí)題.:
1.三個小朋友同行,其中必有幾個小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請你證明至少有兩個小朋友出生在同一周。
3.從電影院中任意找來13個觀眾,至少有兩個人屬相相同。
……。
[設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情。]。
五、課堂總結(jié)。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請學(xué)生暢談,師總結(jié)。
【本文地址:http://aiweibaby.com/zuowen/17933693.html】