古詩(shī)詞是中華優(yōu)秀文化遺產(chǎn)的瑰寶,學(xué)習(xí)和鑒賞古詩(shī)詞有助于豐富我們的內(nèi)涵。怎樣寫(xiě)出一篇完美的總結(jié)?我們需要結(jié)合具體案例和個(gè)人經(jīng)歷進(jìn)行深入剖析和案例總結(jié)。小編精心挑選了一些總結(jié)范文,供大家參考,希望可以幫助到大家寫(xiě)作的過(guò)程。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇一
1.通過(guò)觀察、比較、判斷、歸納等方法,理解“抽屜原理”。
2.能夠根據(jù)“抽屜原理”解決生活中的實(shí)際問(wèn)題。
【學(xué)習(xí)過(guò)程】。
一、知識(shí)鋪墊。
3個(gè)同學(xué)坐2張凳子。猜一猜結(jié)果怎樣?
我發(fā)現(xiàn):。
二、自主探究。
1.例:把4只鉛筆放進(jìn)3個(gè)文具盒中,有幾種不同的方法?
枚舉法:我們用括號(hào)里的`三個(gè)數(shù)字,分別代表三個(gè)文具盒中鉛筆的枝數(shù),則有(4,0,0),(),(),()等幾種情況。
假設(shè)法:假設(shè)先在每個(gè)文具盒中放1枝鉛筆,3個(gè)文具盒里就放了??______枝鉛筆,還剩下_____枝,放入任意一個(gè)文具盒,那么這個(gè)文具盒中就有______枝鉛筆。
小組討論:不管用哪種方法,文具盒中的鉛筆枝數(shù)總有什么特點(diǎn)?
小結(jié):把4枝鉛筆放到3個(gè)盒子里,不管怎么放,總有一個(gè)盒子里至少有_____枝鉛筆。
2.思考:把上述例題中的鉛筆換成蘋(píng)果,盒子換成抽屜,是否還有剛才的結(jié)論?
結(jié)論:
__________________________________________________________。
3.把5個(gè)蘋(píng)果放入4個(gè)抽屜,總有一個(gè)抽屜里至少有_____個(gè)蘋(píng)果?
把7個(gè)蘋(píng)果放入6個(gè)抽屜,總有一個(gè)抽屜里至少有_____個(gè)蘋(píng)果?
把100個(gè)蘋(píng)果放入99個(gè)抽屜,結(jié)論:______________________________。
你有什么發(fā)現(xiàn):
__________________________________________________。
當(dāng)蘋(píng)果個(gè)數(shù)比較多時(shí),我們一般用什么方法思考?說(shuō)一說(shuō)枚舉法和假設(shè)法的優(yōu)缺點(diǎn)。
___________________________________________。
5.回顧反思。
通過(guò)以上學(xué)習(xí)你收獲了什么?你還有哪些疑問(wèn)或困惑可以先在小組內(nèi)商討,解決不了的可以告訴老師一起解決。
三、課堂達(dá)標(biāo)。
1.6只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里,為什么?
2.一盒圍棋棋子,黑白子混放,我們?nèi)我饷?個(gè)棋子,結(jié)果怎樣?(提示:把什么看作物體,什么看作抽屜?)。
3.足球隊(duì)共有13名學(xué)生,一定至少有2名學(xué)生的生日在同一個(gè)月里,為什么?
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇二
教學(xué)目標(biāo):
1、使學(xué)生經(jīng)歷將一些實(shí)際問(wèn)題抽象為代數(shù)問(wèn)題的過(guò)程,并能運(yùn)用所學(xué)知識(shí)解決有關(guān)實(shí)際問(wèn)題。
2、能與他人交流思維過(guò)程和結(jié)果,并學(xué)會(huì)有條理地、清晰地闡述自己的觀點(diǎn)。
教學(xué)重點(diǎn):分配方法。
教學(xué)難點(diǎn):分配方法。
教學(xué)方法:列舉法分析法。
學(xué)習(xí)方法:嘗試法自主探究法。
教學(xué)用具:課件。
教學(xué)過(guò)程:
一、定向?qū)W(xué)(3分)。
(一)游戲引入。
1、游戲要求:開(kāi)始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”這句話說(shuō)得對(duì)嗎?
游戲開(kāi)始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究這個(gè)原理。
(二)揭示目標(biāo)。
理解并掌握解決鴿巢問(wèn)題的解答方法。
二、自主學(xué)習(xí)(8分)。
1、看書(shū)68頁(yè),閱讀例1:把4枝鉛筆放進(jìn)3個(gè)文具盒中,可以怎么放?有幾種情況?
(1)理解“總有”和“至少”的意思。
(2)理解4種放法。
2、全班同學(xué)交流思維的過(guò)程和結(jié)果。
3、跟蹤練習(xí)。
68頁(yè)做一做:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
(1)說(shuō)出想法。
如果每個(gè)鴿舍只飛進(jìn)1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進(jìn)其中的一個(gè)鴿舍或分別飛進(jìn)其中的`兩個(gè)鴿舍。所以至少有2只鴿子飛進(jìn)同一個(gè)鴿舍。
(2)嘗試分析有幾種情況。
(3)說(shuō)一說(shuō)你有什么體會(huì)。
三、合作交流(8)。
1、出示例2。
把7本書(shū)放進(jìn)3個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾本書(shū)?(1)合作交流有幾種放法。
不難得出,總有一個(gè)抽屜至少放進(jìn)3本。
(2)指名說(shuō)一說(shuō)思維過(guò)程。
如果每個(gè)抽屜放2本,放了6本書(shū)。剩下的1本還要放進(jìn)其中一個(gè)抽屜,所以至少有1個(gè)抽屜放進(jìn)3本書(shū)。
2、如果一共有8本書(shū)會(huì)怎樣呢10本呢?
3、你能用算式表示以上過(guò)程嗎?你有什么發(fā)現(xiàn)?
7÷3=2……1(至少放3本)。
8÷3=2……2(至少放4本)。
10÷3=3……1(至少放5本)。
4、做一做。
11只鴿子飛回4個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
四、質(zhì)疑探究(5分)。
1、鴿巢問(wèn)題怎樣求?
小結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個(gè)抽屜至少放進(jìn)的本數(shù)。
2、做一做。
69頁(yè)做一做2題。
五、小結(jié)檢測(cè)(10)。
(一)小結(jié)。
鴿巢問(wèn)題的解答方法是什么?
物體的數(shù)量大于抽屜的數(shù)量,總有一個(gè)抽屜里至少放進(jìn)(商+1)個(gè)物體。
(二)檢測(cè)。
1、填空。
(1)7只鴿子飛進(jìn)5個(gè)鴿舍,至少有()只鴿子要飛進(jìn)同伴的鴿舍里。
(2)有9本書(shū),要放進(jìn)2個(gè)抽屜里,必須有一個(gè)抽屜至少要放()本書(shū)。
(3)四年級(jí)兩個(gè)班共有73名學(xué)生,這兩個(gè)班的學(xué)生至少有()人是同一月出生的。4、任意給出3個(gè)不同的自然數(shù),其中一定有2個(gè)數(shù)的和是()數(shù)。
2、選擇。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇三
1.通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。滲透“建?!彼枷?。
2.經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3.通過(guò)“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點(diǎn)。
經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢原理”。
教學(xué)難點(diǎn)。
理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
教學(xué)過(guò)程。
一、游戲激趣,初步體驗(yàn)。
游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫(xiě)在手心上,寫(xiě)好后,握緊拳頭不要松開(kāi),讓老師猜。
二、操作探究,發(fā)現(xiàn)規(guī)律。
1.具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
(1)學(xué)生匯報(bào)結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說(shuō),“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆?!?。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
2.假設(shè)法,用“平均分”來(lái)演繹“鴿巢問(wèn)題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考――同桌交流――匯報(bào)。
2匯報(bào)想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
三、探究歸納,形成規(guī)律。
1.課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過(guò)程。]。
根據(jù)學(xué)生回答板書(shū):5÷2=2……1。
(學(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書(shū):至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2.師依次創(chuàng)設(shè)疑問(wèn):7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書(shū))。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書(shū),同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
板書(shū):至少數(shù)=商+1。
師過(guò)渡語(yǔ):同學(xué)們的這一發(fā)現(xiàn),稱(chēng)為“鴿巢問(wèn)題”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱(chēng)“狄里克雷原理”,也稱(chēng)為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
四、運(yùn)用規(guī)律解決生活中的問(wèn)題。
課件出示習(xí)題.:
1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
3.從電影院中任意找來(lái)13個(gè)觀眾,至少有兩個(gè)人屬相相同。
……。
[設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]。
五、課堂總結(jié)。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇四
:教材第70頁(yè)例3及練習(xí)十三相關(guān)題目。
1.在理解簡(jiǎn)單的“鴿巢原理”的基礎(chǔ)上,使學(xué)生學(xué)會(huì)用此原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
2.經(jīng)歷把實(shí)際問(wèn)題轉(zhuǎn)化為鴿巢問(wèn)題的過(guò)程,了解用“鴿巢原理”解題的一般步驟,恰當(dāng)運(yùn)用“鴿巢原理”解決問(wèn)題。
3.通過(guò)用“鴿巢問(wèn)題”解決簡(jiǎn)單的實(shí)際問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。
教學(xué)重點(diǎn):能運(yùn)用“鴿巢原理”解決實(shí)際問(wèn)題。
教學(xué)難點(diǎn):能根據(jù)題意設(shè)計(jì)“鴿巢”。
教學(xué)準(zhǔn)備:多媒體課件。
(二次備課)。
1.課件出示下列問(wèn)題。
(1)把5只鴿子放進(jìn)4個(gè)籠子里,總有一個(gè)籠子里至少放進(jìn)()只鴿子。
(2)把7本書(shū)放進(jìn)4個(gè)抽屜里,總有一個(gè)抽屜里至少放進(jìn)()本書(shū)。
2.導(dǎo)入新課:上節(jié)課我們了解了“鴿巢原理”,這節(jié)課我們就用“鴿巢原理”解決問(wèn)題。
點(diǎn)名讓學(xué)生匯報(bào)預(yù)習(xí)情況。(重點(diǎn)讓學(xué)生說(shuō)說(shuō)通過(guò)預(yù)習(xí)本節(jié)課要學(xué)習(xí)的內(nèi)容,學(xué)到了哪些知識(shí),還有哪些不明白的地方,有什么問(wèn)題)。
學(xué)生提出猜想。
分組討論:如何把這道題轉(zhuǎn)化為“鴿巢問(wèn)題”?
這道題其實(shí)就是把摸出的球(鴿子)放在兩種顏色的“鴿巢”中,結(jié)論就是有一個(gè)顏色“鴿巢”中至少有2個(gè)。
根據(jù)“鴿巢原理”(一),只要摸出的球的個(gè)數(shù)比它們的顏色種數(shù)多1,就能保證一定有2個(gè)球是同色的,所以答案是至少要摸出3個(gè)球。
有兩種顏色,只要摸出的球比它們的顏色至少多1,就能保證有兩個(gè)球同色。
2.引導(dǎo)學(xué)生總結(jié)用“鴿巢原理”解決問(wèn)題的一般步驟。
(1)確定什么是鴿巢及有幾個(gè)鴿巢。
(2)確定分放的物體。
(3)用倒推的方法找到答案。
1.完成教材第70頁(yè)“做一做”第2題。
2.完成教材練習(xí)十三第3、4題。
一副撲克牌(不包括大、小王)有4種花色,每種花色各有13張,現(xiàn)在從中任意抽牌。
(1)最少要抽(13)張牌,才能保證一定有4張牌是同一種花色的。
(2)最少要抽(14)張牌,才能保證一定有2張牌是不同種花色的。
(3)最少要抽(14)張牌,才能保證一定有2張牌是數(shù)字相同的。
今天我們通過(guò)學(xué)習(xí)進(jìn)一步理解了“鴿巢原理”,并運(yùn)用它解決實(shí)際問(wèn)題。
教材練習(xí)十三第5、6題。
獨(dú)立回答問(wèn)題。
教師根據(jù)學(xué)生預(yù)習(xí)的情況,有側(cè)重點(diǎn)地調(diào)整教學(xué)方案。
獨(dú)立思考后,在小組內(nèi)討論怎樣用“鴿巢原理”解決這些問(wèn)題。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇五
本節(jié)課是數(shù)學(xué)廣角內(nèi)容,也叫“抽屜原理”。實(shí)際上是一種解決某種特定結(jié)構(gòu)的數(shù)學(xué)或生活問(wèn)題的模型,體現(xiàn)了一種數(shù)學(xué)的思想方法。反思如下:
1.從學(xué)生喜歡的“游戲”入手,激發(fā)學(xué)生學(xué)習(xí)的興趣和求知欲望,從而提出需要研究的數(shù)學(xué)問(wèn)題。這樣設(shè)計(jì)使學(xué)生在生動(dòng)、活潑的數(shù)學(xué)活動(dòng)中主動(dòng)參與、主動(dòng)實(shí)踐、主動(dòng)思考,使學(xué)生的數(shù)學(xué)知識(shí)、數(shù)學(xué)能力、數(shù)學(xué)思想、數(shù)學(xué)情感得到充分的發(fā)展,從而達(dá)到動(dòng)智與動(dòng)情的完美結(jié)合,全面提高學(xué)生的整體素質(zhì)。
2.引導(dǎo)學(xué)生在經(jīng)歷猜測(cè)、嘗試、驗(yàn)證的過(guò)程中逐步從直觀走向抽象。
在例1中針對(duì)實(shí)驗(yàn)的所有結(jié)果,在學(xué)生總結(jié)表征的基礎(chǔ)上,進(jìn)而提出“你還可以怎樣想?”的問(wèn)題,組織學(xué)生展開(kāi)討論交流。我引導(dǎo)學(xué)生借助平均分即每個(gè)筆筒里先只放1支,這時(shí)學(xué)生看到還剩下1支鉛筆,這1支鉛筆不管放入其中的哪一個(gè)筆筒,這個(gè)筆筒都會(huì)有2支鉛筆。進(jìn)一步引導(dǎo)學(xué)生加深對(duì)“至少有一個(gè)筆筒中有2支鉛筆”的理解。最后,組織學(xué)生進(jìn)一步借助直觀操作,討論諸如“5支鉛筆放進(jìn)4個(gè)筆筒,不管怎么放,總有一個(gè)筆筒中至少有2支鉛筆,為什么?”的問(wèn)題,并不斷改變數(shù)據(jù)(鉛筆數(shù)比筆筒數(shù)多1),讓學(xué)生繼續(xù)思考,引導(dǎo)學(xué)生歸納得出一般性的結(jié)論:(+1)支鉛筆放進(jìn)個(gè)筆筒里,總有一個(gè)筆筒里至少放進(jìn)2支鉛筆。注重讓學(xué)生在觀察、實(shí)驗(yàn)、猜想、驗(yàn)證等活動(dòng)中,發(fā)展合情推理能力,培養(yǎng)學(xué)生能進(jìn)行有條理的思考,能比較清楚地表達(dá)自己的思考過(guò)程與結(jié)果,經(jīng)歷與他人合作交流解決問(wèn)題的過(guò)程。
本節(jié)課首先通過(guò)三個(gè)基礎(chǔ)練習(xí)回顧了“鴿巢原理”,接下來(lái)的練習(xí)題是鴿巢問(wèn)題的原理比較簡(jiǎn)單,但是在實(shí)際的題目當(dāng)中,最主要的.是幫助學(xué)生在不同的題目中找出該道題目的“鴿巢”是什么,然后要放到“鴿巢”里的東西是什么,只有幫助學(xué)生在解題時(shí)有了構(gòu)建鴿巢問(wèn)題模型的能力,才能使學(xué)生真正的理解鴿巢問(wèn)題,以便更好地解決鴿巢問(wèn)題。
鴿巢問(wèn)題的出題方式都比較有趣,可以涉及生活的許多不同的方面。在解決這些問(wèn)題時(shí)可以讓學(xué)生都動(dòng)手,構(gòu)解題的模型,用實(shí)物去解決問(wèn)題,教師要提高學(xué)生的這種能力,才能讓學(xué)生真正地學(xué)會(huì)學(xué)習(xí),產(chǎn)生學(xué)習(xí)數(shù)學(xué)動(dòng)力,掌握學(xué)習(xí)數(shù)學(xué)的方法。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇六
一堂好的數(shù)學(xué)課,我認(rèn)為應(yīng)該是原生態(tài),充滿“數(shù)學(xué)味”的課。本節(jié)課我讓學(xué)生經(jīng)歷了探究“鴿巢問(wèn)題”的過(guò)程,初步了解了“鴿巢問(wèn)題”,并能夠應(yīng)用與實(shí)際。
一、情境導(dǎo)入,初步感知。
興趣是最好的老師,在導(dǎo)入新課時(shí),我以4人的搶凳子游戲,初步感受至少有兩位同學(xué)相同的現(xiàn)象,抓住學(xué)生注意力。
二、教學(xué)時(shí)以學(xué)生為主體,以學(xué)定教。
由于課前讓學(xué)生做了預(yù)習(xí),所以在課上我并沒(méi)有“滿堂灌”,而是先了解學(xué)生的已知和未知點(diǎn),讓預(yù)習(xí)程度好的'同學(xué)來(lái)試著解決其他同學(xué)提出的問(wèn)題,再師生質(zhì)疑,完成對(duì)新知的傳授。這樣既培養(yǎng)了學(xué)生預(yù)習(xí)的習(xí)慣,又能讓學(xué)生找到知識(shí)的盲點(diǎn),從而對(duì)本節(jié)課感興趣,同時(shí)又鍛煉了學(xué)生的語(yǔ)言表達(dá)能力。
三、通過(guò)練習(xí),解釋?xiě)?yīng)用。
四、適當(dāng)設(shè)計(jì)形式多樣的練習(xí),可以引起并保持學(xué)生的學(xué)習(xí)興趣。如,撲克牌的游戲,學(xué)生們非常感興趣,達(dá)到了預(yù)期的效果。
不足:
1、學(xué)生們語(yǔ)言表達(dá)能力還有待提高。
2、課堂中教師與速較快。
將本文的word文檔下載到電腦,方便收藏和打印。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇七
教學(xué)內(nèi)容:教科書(shū)第68頁(yè)例1。
教學(xué)目標(biāo):
1、使學(xué)生理解“抽屜原理”(“鴿巢原理”)的基本形式,并能初步運(yùn)用“抽屜原理”解決相關(guān)的實(shí)際問(wèn)題或解釋相關(guān)的現(xiàn)象。
2、通過(guò)操作、觀察、比較、說(shuō)理等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷抽屜原理的形成過(guò)程,體會(huì)和掌握邏輯推理思想和模型思想,提高學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):
經(jīng)歷“抽屜原理”的探究過(guò)程,了解掌握“抽屜原理”。
教學(xué)難點(diǎn):
理解“抽屜原理”,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以“模型化”。
教學(xué)模式:
學(xué)、探、練、展。
教學(xué)準(zhǔn)備:
多媒體課件一套。
教學(xué)過(guò)程:。
一、游戲?qū)搿?/p>
1.師生玩“撲克牌魔術(shù)”游戲。
(2)玩游戲,組織驗(yàn)證。
通過(guò)玩游戲驗(yàn)證,引導(dǎo)學(xué)生體會(huì)到:不管怎么抽,總有兩張牌是同花色的。
2.導(dǎo)入新課。
剛才這個(gè)游戲當(dāng)中,蘊(yùn)含著一個(gè)數(shù)學(xué)問(wèn)題,這節(jié)課我們就一起來(lái)研究這個(gè)有趣的問(wèn)題。
二、呈現(xiàn)問(wèn)題,探究新知。
課件出示自學(xué)提示:
(1)“總有”和“至少”是什么意思?
(2)把4支鉛筆放進(jìn)3個(gè)筆筒中,可以怎么放?有幾種。
不同的放法?(請(qǐng)大家用擺一擺、畫(huà)一畫(huà)、寫(xiě)一寫(xiě)等方法把自己的想法表示出來(lái)。)。
(3)把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放總有一個(gè)筆筒至少放進(jìn)xxx支鉛筆?
(一)自主探究,初步感知。
1、學(xué)生小組合作探究。
2、反饋交流。
(1)枚舉法。
(2)數(shù)的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(3)假設(shè)法。
師:除了像這樣把所有可能的情況都列舉出來(lái),還有沒(méi)有別的。
方法也可以證明這句話是正確的呢?
生:我是這樣想的,先假設(shè)每個(gè)筆筒中放1支,這樣還剩1支。這時(shí)無(wú)論放到哪個(gè)筆筒,那個(gè)筆筒中就有2支了。
師:你為什么要先在每個(gè)筆筒中放1支呢?
生:因?yàn)榭偣灿?支,平均分,每個(gè)筆筒只能分到1支。
師:你為什么一開(kāi)始就平均分呢?(板書(shū):平均分)。
生:平均分就可以使每個(gè)筆筒里的筆盡可能少一點(diǎn)。
生:平均分已經(jīng)使每個(gè)筆筒里的筆盡可能少了,如果這樣都符合要求,那另外的情況肯定也是符合要求的了。
(4)確認(rèn)結(jié)論。
師:到現(xiàn)在為止,我們可以得出什么結(jié)論?
生(齊):把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
(二)提升思維,構(gòu)建模型。
師:(口述)那要是。
(1)把5支鉛筆放進(jìn)4個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有xx支鉛筆。
(2)把6支鉛筆放進(jìn)5個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有xx支鉛筆。
(3)10支鉛筆放進(jìn)9個(gè)筆筒中呢?100支鉛筆放進(jìn)99個(gè)筆筒中。
2.建立模型。
師:通過(guò)剛才的.分析,你有什么發(fā)現(xiàn)?
生:只要鉛筆的數(shù)量比筆筒的數(shù)量多1,那么總有一個(gè)筆筒至少要放進(jìn)2支筆。
師:對(duì)。鉛筆放進(jìn)筆筒我們會(huì)解釋了,那么有關(guān)鴿子飛入鴿巢的問(wèn)題,大家會(huì)解釋嗎?(課件出示)。
師:以上這些問(wèn)題有什么相同之處呢?
生:其實(shí)都是一樣的,鴿巢就相當(dāng)于筆筒,鴿子就相當(dāng)于鉛筆。
師:像這樣的數(shù)學(xué)問(wèn)題,我們就叫做“鴿巢問(wèn)題”或“抽屜問(wèn)題”,它們里面蘊(yùn)含的這種數(shù)學(xué)原理,我們就叫做“鴿巢問(wèn)題”或“抽屜問(wèn)題”。(揭題)。
三、基本練習(xí)。
四、拓展提升。
五、課堂小結(jié)。
六、作業(yè)布置。
完成課本第71頁(yè),練習(xí)十三,第1題。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇八
1.在操作、觀察、比較的過(guò)程中初步了解抽屜原理,并運(yùn)用抽屜原理的知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題。
重點(diǎn)難點(diǎn) 經(jīng)歷抽屜原理的.探究過(guò)程,并對(duì)抽屜原理的問(wèn)題模式化
學(xué)生筆記(教師點(diǎn)撥) 學(xué) 案 內(nèi) 容
(1)自學(xué)例1
把4枝鉛筆放進(jìn)3個(gè)文具盒中,可以怎么放?有幾種情況?
(1) 學(xué)生思考各種放法。
(2) 第一種放法: 第二種放法:
第三種放法: 第四種放法:
教學(xué)過(guò)程:
5÷2=2……1 (至少放3本)
7÷2=3……1 (至少放4本)
9÷2=4……1 (至少放5本)
1、提出問(wèn)題。
不管怎么放,總有一個(gè)文具盒里至少放進(jìn)( )鉛筆。為什么?
如果每個(gè)文具盒只放( )鉛筆,最多放( )枝,剩下()枝還要放進(jìn)其中的一個(gè)文具盒,所以至少有()鉛筆放進(jìn)同一個(gè)文具盒。
(1) 說(shuō)一說(shuō)你有什么體會(huì)。
二自學(xué)例2
1、把5本書(shū)放進(jìn)2個(gè)抽屜中,不管怎么放,總有一個(gè)抽屜至少放進(jìn)幾體書(shū)?
2、擺一擺,有幾種放法。
不難得出,不管怎么放總有一個(gè)抽屜至少放進(jìn)( )本書(shū)。
3、說(shuō)一說(shuō)你的思維過(guò)程。
如果每個(gè)抽屜放( )本書(shū),共放了( )本書(shū)。剩下的1本還要放進(jìn)其中一個(gè)抽屜,所以至少有1個(gè)抽屜放進(jìn)3本書(shū)。
如果一共有7本書(shū)會(huì)怎樣呢?9本呢?
4. 你能用算式表示以上過(guò)程嗎?你有什么發(fā)現(xiàn)?
總結(jié):先平均分配,再把余數(shù)進(jìn)行分配,得出的就是一個(gè)抽屜至少放進(jìn)的本數(shù)。
1. 做一做。
(1)7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
(2) 說(shuō)出想法。
如果每個(gè)鴿舍只飛進(jìn)( )鴿子,最多飛回( )鴿子,剩下()鴿子還要飛進(jìn)其中的一個(gè)鴿舍或分別飛進(jìn)其中的兩個(gè)鴿舍。所以至少有2只鴿子飛進(jìn)同一個(gè)鴿舍。
2. 做一做
8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
想:每個(gè)鴿舍飛進(jìn)( )鴿子,共飛進(jìn)( )鴿子。剩下( )鴿子還要飛進(jìn)其中的1個(gè)或2個(gè)鴿舍,所以,至少有( )鴿子要飛進(jìn)同一個(gè)鴿舍里。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇九
1、借助直觀學(xué)具演示,經(jīng)歷探究過(guò)程。教師注重讓學(xué)生在操作中,經(jīng)歷探究過(guò)程,感知、理解鴿巢問(wèn)題。
2、教師注重培養(yǎng)學(xué)生的“模型”思想。通過(guò)一系列的操作活動(dòng),學(xué)生對(duì)于枚舉法和假設(shè)法有一定的認(rèn)識(shí),加以比較,分析兩種方法在解決鴿巢問(wèn)題的優(yōu)超性和局限性,使學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來(lái)思考問(wèn)題。
3、在活動(dòng)中引導(dǎo)學(xué)生感受數(shù)學(xué)的魅力。本節(jié)課的“鴿巢問(wèn)題”的建立是學(xué)生在觀察、操作、思考與推理的基礎(chǔ)上理解和發(fā)現(xiàn)的,學(xué)生學(xué)的積極主動(dòng)。特別以游戲引入,又以游戲結(jié)束,既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又學(xué)到了抽屜原理的知識(shí),同時(shí)鍛煉了學(xué)生的思維。在整節(jié)課的教學(xué)活動(dòng)中使學(xué)生感受了數(shù)學(xué)的魅力。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十
教學(xué)目標(biāo):
1、引導(dǎo)學(xué)生經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理,會(huì)運(yùn)用鴿巢原理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
2、通過(guò)操作、觀察、比較、列舉、假設(shè)、推理等活動(dòng)發(fā)展學(xué)生的類(lèi)推能力,形成比較抽象的數(shù)學(xué)思維。
3、使學(xué)生經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,初步形成模型思想。
教學(xué)重點(diǎn):經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理。
教學(xué)難點(diǎn):理解鴿巢原理,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以模型化。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境、導(dǎo)入新課。
1、師:同學(xué)們,你們玩過(guò)撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學(xué)隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)。
2、師:大家猜對(duì)了嗎?其實(shí)這里面藏著一個(gè)非常有趣的數(shù)學(xué)問(wèn)題,叫做“鴿巢問(wèn)題”。今天我們就一起來(lái)研究它。
二、合作探究、發(fā)現(xiàn)規(guī)律。
師:研究一個(gè)數(shù)學(xué)問(wèn)題,我們通常從簡(jiǎn)單一點(diǎn)的情況開(kāi)始入手研究。請(qǐng)看大屏幕。(生齊讀題目)。
1、教學(xué)例1:把4支鉛筆放進(jìn)3個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
(1)理解“總有”、“至少”的含義。(ppt)總有:一定有至少:最少。
師:這個(gè)結(jié)論正確嗎?我們要?jiǎng)邮謥?lái)驗(yàn)證一下。
探究之前,老師有幾個(gè)要求。(一生讀要求)。
(3)匯報(bào)展示方法,證明結(jié)論。(展示兩張作品,其中一張是重復(fù)擺的。)。
第一張作品:誰(shuí)看懂他是怎么擺的?(一生匯報(bào),發(fā)現(xiàn)重復(fù)的擺法)。
第二張作品:他是怎么擺的?這4種擺法有沒(méi)有重復(fù)的?還有其他的擺法嗎?板書(shū):(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
師:我們要證明的是總有一個(gè)筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報(bào):第一種擺法中哪個(gè)筆筒滿足要求?只要發(fā)現(xiàn)有一個(gè)筆筒里至少有2支鉛筆就行了。)。
總結(jié):把4支鉛筆放進(jìn)3個(gè)筆筒中一共只有四種情況,在每一種情況中,都一定有一個(gè)筆筒中至少有2支鉛筆??磥?lái)這個(gè)結(jié)論是正確的。
師:像這樣把所有情況一一列舉出來(lái)的方法,數(shù)學(xué)上叫做“枚舉法”。(板書(shū))。
(4)通過(guò)比較,引出“假設(shè)法”
引導(dǎo)學(xué)生說(shuō)出:假設(shè)先在每個(gè)筆筒里放1支,還剩下1支,這時(shí)無(wú)論放到哪個(gè)筆筒,那個(gè)筆筒里就有2支鉛筆了。(ppt演示)。
(5)初步建模—平均分。
師:先在每個(gè)筆筒里放1支,這種分法實(shí)際上是怎么分的?
生:平均分(師板書(shū))。
師:為什么要去平均分呢?平均分有什么好處?
生:平均分可以保證每個(gè)筆筒里的筆數(shù)量一樣,盡可能的少。這樣多出來(lái)的1支不管放進(jìn)哪個(gè)筆筒里,總有一個(gè)筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個(gè)筆筒里,這樣就不能保證一下子找到最少的情況了)。
師:這種先平均分的方法叫做“假設(shè)法”。怎么用算式表示這種方法呢?
板書(shū):4÷3=1……11+1=2。
師:現(xiàn)在我們把題目改一改,結(jié)果會(huì)怎樣呢?
ppt出示:把5支筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有幾支筆?(引導(dǎo)學(xué)生說(shuō)清楚理由)。
師:為什么大家都選擇用假設(shè)法來(lái)分析?(假設(shè)法更直接、簡(jiǎn)單)。
通過(guò)這些問(wèn)題,你有什么發(fā)現(xiàn)?
交流總結(jié):只要筆的數(shù)量比筆筒數(shù)量多1,總有一個(gè)筆筒里至少放進(jìn)2支筆。
過(guò)渡語(yǔ):師:如果多出來(lái)的數(shù)量不是1,結(jié)果會(huì)怎樣呢?
2、出示:5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠里至少飛進(jìn)了幾只鴿子呢?
(1)同桌討論交流、指名匯報(bào)。
先讓一生說(shuō)出5÷3=1……21+2=3的結(jié)果,再問(wèn):有不同的意見(jiàn)嗎?
再讓一生說(shuō)出5÷3=1……21+1=2。
師:你們同意哪種想法?
(2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?
(3)明確:再次平均分,才能保證“至少”的情況。
3、教學(xué)例2。
(1)師:我們剛才研究的把筆放入筆筒、鴿子飛進(jìn)鴿籠這樣的問(wèn)題就叫做“鴿巢問(wèn)題”,也叫“抽屜問(wèn)題”。它最早是由德國(guó)數(shù)學(xué)家狄利克雷發(fā)現(xiàn)并提出的,當(dāng)他發(fā)現(xiàn)這個(gè)問(wèn)題之后決定繼續(xù)深入研究下去。出示例2。
(2)獨(dú)立思考后指名匯報(bào)。
師板書(shū):7÷3=2……12+1=3。
(3)如果有8本書(shū)會(huì)怎樣?10本書(shū)呢?
指名回答,師相機(jī)板書(shū):8÷3=2……22+1=3。
師:剩下的2本怎么放才更符合“至少”的要求?
為什么不能用商+2?
10÷3=3……13+1=4。
(4)觀察發(fā)現(xiàn)、總結(jié)規(guī)律。
歸納總結(jié):總有一個(gè)抽屜里至少可以放“商+1”本書(shū)。(板書(shū):商+1)。
三、鞏固應(yīng)用。
師:利用鴿巢問(wèn)題中這個(gè)原理可以解釋生活中很多有趣的問(wèn)題。
1、做一做第1、2題。
2、用抽屜原理解釋“撲克表演”。
說(shuō)清楚把4種花色看作抽屜,5張牌看作要放進(jìn)的書(shū)。
四、全課小結(jié):
通過(guò)這節(jié)課的學(xué)習(xí),你有什么收獲或感想?
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十一
審定人教版六年級(jí)下冊(cè)數(shù)學(xué)《數(shù)學(xué)廣角鴿巢問(wèn)題》,也就是原實(shí)驗(yàn)教材《抽屜原理》。
設(shè)計(jì)理念。
《鴿巢問(wèn)題》既鴿巢原理又稱(chēng)抽屜原理,它是組合數(shù)學(xué)的一個(gè)基本原理,最先是由德國(guó)數(shù)學(xué)家狄利克雷明確提出來(lái)的,因此,也稱(chēng)為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€(gè)筒至少放進(jìn)2支筆”這句話對(duì)于學(xué)生而言,不僅說(shuō)起來(lái)生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺(jué)得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過(guò)操作,最直觀地呈現(xiàn)“總有一個(gè)筒至少放進(jìn)2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動(dòng)性,讓學(xué)生在證明結(jié)論的過(guò)程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動(dòng)者,特別是這種原理的初步認(rèn)識(shí),不應(yīng)該是教師牽著學(xué)生去認(rèn)識(shí),而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。
所以我認(rèn)為應(yīng)該提出問(wèn)題,讓學(xué)生在具體的操作中來(lái)證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過(guò)程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說(shuō)理的嚴(yán)密性,也不需要學(xué)生確定過(guò)于抽象的“鴿巢”和“物體”。
教材分析。
《鴿巢問(wèn)題》這是一類(lèi)與“存在性”有關(guān)的問(wèn)題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們?cè)谕粋€(gè)月過(guò)生日。在這類(lèi)問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說(shuō)明通過(guò)什么方式把這個(gè)存在的物體(或人)找出來(lái)。這類(lèi)問(wèn)題依據(jù)的理論,我們稱(chēng)之為“鴿巢問(wèn)題”。
通過(guò)第一個(gè)例題教學(xué),介紹了較簡(jiǎn)單的“鴿巢問(wèn)題”:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢至少放進(jìn)2個(gè)物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個(gè)筒至少放進(jìn)2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過(guò)前一個(gè)例題的兩個(gè)層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡(jiǎn)單的具體問(wèn)題中解釋證明。
第二個(gè)例題是在例1的基礎(chǔ)上說(shuō)明:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體。因此我認(rèn)為例2的目的是使學(xué)生進(jìn)一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過(guò)程。
學(xué)情分析。
可能有一部分學(xué)生已經(jīng)了解了鴿巢問(wèn)題,他們?cè)诰唧w分得過(guò)程中,都在運(yùn)用平均分的方法,也能就一個(gè)具體的問(wèn)題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒(méi)有接觸,所以他們可能會(huì)認(rèn)為至少的情況就應(yīng)該是“1”。
教學(xué)目標(biāo)。
1.通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。滲透“建?!彼枷?。
2.經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3.通過(guò)“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點(diǎn)。
經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢原理”。
教學(xué)難點(diǎn)。
理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
教學(xué)過(guò)程。
一、游戲激趣,初步體驗(yàn)。
游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫(xiě)在手心上,寫(xiě)好后,握緊拳頭不要松開(kāi),讓老師猜。
二、操作探究,發(fā)現(xiàn)規(guī)律。
1、具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
(1)學(xué)生匯報(bào)結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說(shuō),“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆?!?。
設(shè)計(jì)意圖:鴿巢問(wèn)題對(duì)于學(xué)生來(lái)說(shuō),比較抽象,特別是“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆?!边@句話的理解。所以通過(guò)具體的操作,枚舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的筒,理解“總有一個(gè)筒里至少放進(jìn)了2支筆”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過(guò)程,訓(xùn)練學(xué)生的邏輯思維能力。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
2、假設(shè)法,用“平均分”來(lái)演繹“鴿巢問(wèn)題”。
1、思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報(bào)。
2、匯報(bào)想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的.1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
3、學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
三、探究歸納,形成規(guī)律。
1、課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過(guò)程。
根據(jù)學(xué)生回答板書(shū):5÷2=2……1。
(學(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書(shū):至少數(shù)=商+余數(shù)?
至少數(shù)=商+1。
2.師依次創(chuàng)設(shè)疑問(wèn):7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書(shū))。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書(shū),同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
板書(shū):至少數(shù)=商+1。
設(shè)計(jì)意圖:對(duì)規(guī)律的認(rèn)識(shí)是循序漸進(jìn)的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2支”得到“至少商+余數(shù)”個(gè),再到得到“商+1”的結(jié)論。
師過(guò)渡語(yǔ):同學(xué)們的這一發(fā)現(xiàn),稱(chēng)為“鴿巢問(wèn)題”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱(chēng)“狄里克雷原理”,也稱(chēng)為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用。“鴿巢原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
四、運(yùn)用規(guī)律解決生活中的問(wèn)題。
課件出示習(xí)題.:
1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
3.從電影院中任意找來(lái)13個(gè)觀眾,至少有兩個(gè)人屬相相同。
……。
設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。
五、課堂總結(jié)。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十二
教學(xué)目標(biāo):
1、理解簡(jiǎn)單的鴿巢問(wèn)題及鴿巢問(wèn)題的一般形式,引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究“鴿巢問(wèn)題”。
2、體會(huì)數(shù)學(xué)知識(shí)在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識(shí)。
教學(xué)重點(diǎn):了解簡(jiǎn)單的鴿巢問(wèn)題,理解“總有”和“至少”的含義。
教學(xué)難點(diǎn):運(yùn)用“鴿巢原理”解決相關(guān)的實(shí)際問(wèn)題,理解數(shù)學(xué)中的優(yōu)化思想。
教學(xué)過(guò)程:
一、游戲激趣導(dǎo)入新課。
1、同學(xué)們看,老師手中拿的是什么?拿出大王和小王,剩下的牌中共有幾種花色?
2、現(xiàn)在我們一起來(lái)玩猜花色的游戲,請(qǐng)5位同學(xué)到前面每人隨意抽一張紙牌,抽完后不要讓老師看到。
3、抽后老師大膽猜測(cè):一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同(課件出示)。
4、有些同學(xué)一定覺(jué)得老師只是湊巧猜對(duì)了,我們?cè)俪橐淮?,老師還大膽猜測(cè):一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同。如果老師猜對(duì)了,就給老師點(diǎn)掌聲。
5、如果老師再換5名同學(xué)來(lái)抽牌,我還敢確定的說(shuō)至少有2張牌的花色相同,這是為什么呢?其實(shí)這里面蘊(yùn)藏著一個(gè)有趣的數(shù)學(xué)原理--抽屜原理,也叫鴿巢原理或鴿巢問(wèn)題,這節(jié)課我們就一起來(lái)研究這個(gè)問(wèn)題。(板書(shū)課題)。
(設(shè)計(jì)意圖:通過(guò)這個(gè)游戲激發(fā)學(xué)生學(xué)習(xí)本節(jié)課的好奇心,也使學(xué)生感受到數(shù)學(xué)和生活中的聯(lián)系,知道學(xué)習(xí)本節(jié)課的重要性。)。
二、呈現(xiàn)問(wèn)題自主探究。
1、小紅在整理自己的學(xué)習(xí)用品是有這樣的發(fā)現(xiàn)(課件出示:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)學(xué)生齊讀。
2、在這句話中你有什么不理解的嗎?學(xué)生提出不理解的詞語(yǔ)。
(1)不管:隨意,想想怎么放就怎么放。
(2)總有:一定有。
(3)至少:最少,最起碼。
師提問(wèn):最少2支指的是幾支呢?具體來(lái)說(shuō)。
2、把整句話翻譯過(guò)來(lái)再說(shuō)一遍。
(設(shè)計(jì)意圖:讓學(xué)生充分理解這句話的意思,為接下來(lái)的研究做好鋪墊。)。
2、你覺(jué)得這句話說(shuō)得對(duì)嗎?給同學(xué)們1分鐘時(shí)間同學(xué)生靜靜思考一下。
3、現(xiàn)在同學(xué)用擺一擺、畫(huà)一畫(huà)、寫(xiě)一寫(xiě)等方法來(lái)驗(yàn)證這句話,老師出示自己的溫馨提示。(課件出示:溫馨提示:選擇自己喜歡的方式驗(yàn)證,比如,同桌合作,用紙杯代替筆筒,用鉛筆擺一擺,一人擺,一人記錄。(注意:不考慮順序。)。
4、學(xué)生匯報(bào)驗(yàn)證的方法:
生1:利用圖片來(lái)列舉出幾種放法。
教師小結(jié):非常好,我們?cè)谟^察這幾種擺法,把符合要求的筆筒用彩色筆標(biāo)出來(lái):所以說(shuō)不管怎么放總有一支筆筒里至少有2支鉛筆。
生2:利用數(shù)字方法列舉出幾種方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)。
我們一起圈出每種分法不少于2的數(shù)字。(表?yè)P(yáng)生2,方法更簡(jiǎn)單一些)。
5、同學(xué)們像剛才把所有中情況都列舉出來(lái),這種方法就叫做列舉法或枚舉法。(板書(shū))。
6、除了這種枚舉法,還有沒(méi)有別的方法也能證明這句話是對(duì)的。
生:先假設(shè)每個(gè)筆筒中放1支鉛筆,這樣還剩1支鉛筆,這時(shí)無(wú)論放到哪個(gè)筆筒,哪個(gè)筆筒就是2支鉛筆了,所以我認(rèn)為是對(duì)的。
師追問(wèn):你為什么要現(xiàn)在每個(gè)筆筒里放1支呢?
生:因?yàn)橐还灿?支筆,平均分后每個(gè)筆筒只能分到一支。
師追問(wèn):那為什么要一開(kāi)始就去平均分呢?
生:平均分就可以使每個(gè)筆筒中的筆盡量少一點(diǎn),如果這樣都能符合要求,其他中情況都能符合要求了。
(設(shè)計(jì)意圖:教師的追問(wèn)讓學(xué)生更明確為什么要平均分,平均分的好處是什么。)。
7、這位同學(xué)的想法真是太與眾不同了,我們?yōu)樗恼?,誰(shuí)聽(tīng)懂了他的想法,把他的想法在復(fù)述一遍。
8、想這位同學(xué)的方法就是假設(shè)法。(板書(shū):假設(shè)法)。
9、到現(xiàn)在為止,我們可以得出結(jié)論了。
三、提升思維構(gòu)建模型。
1、剛才我們通過(guò)不同的方法驗(yàn)證了這句話是正確的,現(xiàn)在老師把題目改一改,同學(xué)們看看還對(duì)不對(duì)了,為什么?(課件出示:把5支鉛筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。)生回答并說(shuō)明理由。
2、課件繼續(xù)出示:
(1)把6個(gè)蘋(píng)果放進(jìn)5個(gè)盤(pán)子里呢?
(2)把10本書(shū)放進(jìn)9個(gè)抽屜中呢?
(3)把100只鴿子放進(jìn)99個(gè)籠子中呢?
3、我們?yōu)槭裁炊疾捎昧思僭O(shè)法來(lái)分析,而不是畫(huà)圖用枚舉法呢?(枚舉法雖然直觀,但是有一定的局限性,假設(shè)法更具有一般性)。
(設(shè)計(jì)意圖:通過(guò)出示更大的數(shù),讓學(xué)生感受到用假設(shè)法的方便性,實(shí)用性,同時(shí)引出的優(yōu)化的思想。)。
4、在數(shù)學(xué)課堂上我們通常采用更便于我們解決的方法來(lái)解決問(wèn)題,這是一種優(yōu)化的思想。(板書(shū):優(yōu)化思想)。
5、引出物體數(shù)、鴿巢數(shù)、至少數(shù),學(xué)生觀察,你有什么發(fā)現(xiàn)嗎?(當(dāng)物體數(shù)比鴿巢數(shù)多1時(shí),總有一個(gè)鴿巢里至少有2個(gè)物體。)。
6、回過(guò)頭來(lái)我們看課前老師猜測(cè)的撲克牌的游戲,誰(shuí)能解釋一下是怎么回事呢?看來(lái)并不是老師神奇,而是鴿巢問(wèn)題神奇啊。
7、同學(xué)們今天的發(fā)現(xiàn)是德國(guó)數(shù)學(xué)家狄利克雷最早提出的:課件介紹有關(guān)鴿巢問(wèn)題的來(lái)歷。
四、解決問(wèn)題練習(xí)鞏固。
通過(guò)學(xué)生的努力,我們一起研究出鴿巢問(wèn)原理,現(xiàn)在老師出幾道題看同學(xué)們是否真的學(xué)會(huì)了。
1、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
(設(shè)計(jì)意圖:習(xí)題2鍛煉學(xué)生的逆向思維,同時(shí)也為下節(jié)課的學(xué)習(xí)埋下了伏筆。)。
五、課堂總結(jié)。
板書(shū)設(shè)計(jì):
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十三
1.通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。滲透“建?!彼枷?。
2.經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3.通過(guò)“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢原理”。
教學(xué)難點(diǎn)。
理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
教學(xué)過(guò)程。
一、游戲激趣,初步體驗(yàn)。
游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫(xiě)在手心上,寫(xiě)好后,握緊拳頭不要松開(kāi),讓老師猜。
二、操作探究,發(fā)現(xiàn)規(guī)律。
1.具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
(1)學(xué)生匯報(bào)結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說(shuō),“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆?!?。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
2.假設(shè)法,用“平均分”來(lái)演繹“鴿巢問(wèn)題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考――同桌交流――匯報(bào)。
2匯報(bào)想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
三、探究歸納,形成規(guī)律。
1.課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過(guò)程。]。
根據(jù)學(xué)生回答板書(shū):5÷2=2……1。
(學(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書(shū):至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2.師依次創(chuàng)設(shè)疑問(wèn):7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書(shū))。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書(shū),同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
板書(shū):至少數(shù)=商+1。
師過(guò)渡語(yǔ):同學(xué)們的這一發(fā)現(xiàn),稱(chēng)為“鴿巢問(wèn)題”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱(chēng)“狄里克雷原理”,也稱(chēng)為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
四、運(yùn)用規(guī)律解決生活中的問(wèn)題。
課件出示習(xí)題.:
1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
3.從電影院中任意找來(lái)13個(gè)觀眾,至少有兩個(gè)人屬相相同。
……。
[設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]。
五、課堂總結(jié)。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十四
教科書(shū)第68頁(yè)例1。
(一)知識(shí)與技能:通過(guò)數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。
(二)過(guò)程與方法:結(jié)合具體的實(shí)際問(wèn)題,通過(guò)實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過(guò)獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問(wèn)題的能力。
(三)情感態(tài)度和價(jià)值觀:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過(guò)程中,讓學(xué)生切實(shí)體會(huì)到探索的樂(lè)趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。
教學(xué)重點(diǎn):經(jīng)歷鴿巢問(wèn)題的探究過(guò)程,初步了解鴿巢原理,會(huì)用鴿巢原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):通過(guò)操作發(fā)展學(xué)生的類(lèi)推能力,形成比較抽象的數(shù)學(xué)思維。
多媒體課件。
(一)候課閱讀分享:
同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問(wèn)題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
(二)激情導(dǎo)課。
好,咱們班人數(shù)已到齊,從今天開(kāi)始,我們學(xué)習(xí)第五單元鴿巢問(wèn)題,這節(jié)課通過(guò)數(shù)學(xué)活動(dòng)我們來(lái)了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開(kāi)始上課。
(三)民主導(dǎo)學(xué)。
1、請(qǐng)同學(xué)們先來(lái)看例1。把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2只鉛筆。
請(qǐng)你再把題讀一次,這是為什么呢?
對(duì)總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說(shuō)最少有兩支鉛筆?;蛘呤钦f(shuō),鉛筆的支數(shù)要大于或等于兩支。
課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個(gè)筆筒中有幾種擺法呢?”這兒老師收集到了各組組長(zhǎng)整理出的大家的各種擺法,我們一起來(lái)看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個(gè)數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無(wú)論是擺還是寫(xiě)都是把方法枚舉出來(lái),在數(shù)學(xué)中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個(gè)情況呢?
方法二:用“假設(shè)法”證明。
對(duì),我們可以這樣想,如果在每個(gè)筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒。這時(shí)無(wú)論放在哪個(gè)筆筒,那個(gè)筆筒中就有2支,所以總有一個(gè)筆筒中至少放進(jìn)2支鉛筆。(平均分)。
方法三:列式計(jì)算。
你能用算式表示這個(gè)方法嗎?
學(xué)生列出式子并說(shuō)一說(shuō)算式中商與余數(shù)各表示什么意思?
2、把5支鉛筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設(shè)法、列式計(jì)算。
3、100支鉛筆,放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少要放進(jìn)多少支鉛筆呢?
還能有枚舉法嗎?對(duì),不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時(shí)候用起來(lái)比較麻煩??梢杂眉僭O(shè)法和列式計(jì)算。
4、表格中通過(guò)整理,總結(jié)規(guī)律。
你發(fā)現(xiàn)了什么規(guī)律?
當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時(shí),至少數(shù)等于2“商+1”。
經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,我把我們的這一發(fā)現(xiàn),稱(chēng)為筆筒問(wèn)題。但其實(shí)最早發(fā)現(xiàn)這個(gè)規(guī)律的不是我們,而是德國(guó)的一個(gè)數(shù)學(xué)家“狄里克雷”。
(四)檢測(cè)導(dǎo)結(jié)。
好,我們做幾道題檢測(cè)一下你們的學(xué)習(xí)效果。
1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?
3、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
(五)全課總結(jié)今天你有什么收獲呢?
(六)布置作業(yè)。
作業(yè):兩導(dǎo)兩練第70頁(yè)、71頁(yè)實(shí)踐應(yīng)用1、4題。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十五
數(shù)學(xué)課堂是師生互動(dòng)的過(guò)程,學(xué)生是學(xué)習(xí)的主人,教師是組織者和引導(dǎo)者。一堂好的數(shù)學(xué)課,我認(rèn)為應(yīng)該是原生態(tài),充滿“數(shù)學(xué)味”的課;應(yīng)該立足課堂,立足知識(shí)點(diǎn)?!皠?chuàng)設(shè)情境——建立模型——解釋?xiě)?yīng)用”是新課程倡導(dǎo)的課堂教學(xué)模式,本節(jié)課運(yùn)用這一模式,設(shè)計(jì)了豐富多彩的數(shù)學(xué)活動(dòng),讓學(xué)生經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,從探究具體問(wèn)題到類(lèi)推得出一般結(jié)論,初步了解“鴿巢問(wèn)題”。本節(jié)課教學(xué)在師生互動(dòng)方面有以下特色:
在導(dǎo)入新課時(shí),我以游戲引入,不僅激發(fā)學(xué)生的興趣,提高師生雙邊互動(dòng)的積極性,更是讓學(xué)生初步感受到鴿巢原理的本質(zhì)。通過(guò)游戲,一下子就抓住了學(xué)生的注意力。讓學(xué)生覺(jué)得這節(jié)課要探究的問(wèn)題,好玩又有意義,喚起學(xué)生繼續(xù)參與課堂互動(dòng)的意愿。
本節(jié)課充分發(fā)揮學(xué)生的自主性,首先讓學(xué)生自主思考,采用自己的方法“證明”:“把4枝鉛筆放入3個(gè)杯子中,不管怎么放,總有一個(gè)杯子里至少放進(jìn)2枝鉛筆”。接著同桌互動(dòng)演示并嘗試解釋這種現(xiàn)象發(fā)生的原因。最后,全班交流展示,多元評(píng)價(jià)各種“證明”方法,針對(duì)學(xué)生的不同方法教師給予針對(duì)性的鼓勵(lì)和指導(dǎo),讓學(xué)生在自主探索中體驗(yàn)成功,獲得發(fā)展。
本節(jié)課注重給學(xué)生創(chuàng)造提出問(wèn)題的機(jī)會(huì),讓學(xué)生去品嘗提出問(wèn)題、解決問(wèn)題的快樂(lè)。如在出示“5只鴿子飛進(jìn)了3個(gè)鴿籠”問(wèn)學(xué)生看到這個(gè)條件你想提怎樣的數(shù)學(xué)問(wèn)題?這樣間接培養(yǎng)學(xué)生的問(wèn)題意識(shí)。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十六
本節(jié)課是通過(guò)幾個(gè)直觀例子,借助實(shí)際操作,引導(dǎo)學(xué)生探究“鴿巢原理”,初步經(jīng)歷“數(shù)學(xué)證明“的過(guò)程,并有意識(shí)的培養(yǎng)學(xué)生的“模型思想。
1、借助直觀操作,經(jīng)歷探究過(guò)程。教師注重讓學(xué)生在操作中,經(jīng)歷探究過(guò)程,感知、理解抽屜原理。
2、教師注重培養(yǎng)學(xué)生的“模型”思想。通過(guò)一系列的操作活動(dòng),學(xué)生對(duì)于枚舉法和假設(shè)法有一定的認(rèn)識(shí),加以比較,分析兩種方法在解決抽屜原理的優(yōu)超性和局限性,使學(xué)生逐步學(xué)會(huì)運(yùn)用一般性的數(shù)學(xué)方法來(lái)思考問(wèn)題。
3、在活動(dòng)中引導(dǎo)學(xué)生感受數(shù)學(xué)的魅力。本節(jié)課的“抽屜原理”的建立是學(xué)生在觀察、操作、思考與推理的基礎(chǔ)上理解和發(fā)現(xiàn)的,學(xué)生學(xué)的積極主動(dòng)。特別以游戲引入,又以游戲結(jié)束,既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又學(xué)到了抽屜原理的知識(shí),同時(shí)鍛煉了學(xué)生的思維。在整節(jié)課的教學(xué)活動(dòng)中使學(xué)生感受了數(shù)學(xué)的魅力。
回顧整節(jié)課我覺(jué)得主要存在兩個(gè)問(wèn)題:
1、在學(xué)生體驗(yàn)數(shù)學(xué)知識(shí)的產(chǎn)生過(guò)程中,我始終擔(dān)心學(xué)生不理解,不敢大膽放手,總是牽著學(xué)生的思路走。
2、這部分內(nèi)容屬于思維訓(xùn)練的內(nèi)容,應(yīng)該讓學(xué)生多說(shuō)理,讓學(xué)生在說(shuō)理的過(guò)程中真正理解體會(huì)“鴿巢問(wèn)題”中的“總有”和“至少”的真正含義,并能靈活運(yùn)用所學(xué)知識(shí)解答一些變式練習(xí)。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十七
本教材專(zhuān)門(mén)安排“數(shù)學(xué)廣角”這一單元,向?qū)W生滲透一些重要的數(shù)學(xué)思想方法。和以往的義務(wù)教育教材相比,這部分內(nèi)容是新增的內(nèi)容。本單元教材通過(guò)幾個(gè)直觀例子,借助實(shí)際操作,向?qū)W生介紹“鴿巢問(wèn)題”,使學(xué)生在理解“鴿巢問(wèn)題”這一數(shù)學(xué)方法的基礎(chǔ)上,對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以“模型化”,會(huì)用“鴿巢問(wèn)題”加以解決。在數(shù)學(xué)問(wèn)題中,有一類(lèi)與“存在性”有關(guān)的問(wèn)題。在這類(lèi)問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就是可以了,并不需要指出是哪個(gè)物體(或人)。這類(lèi)問(wèn)題依據(jù)的理論我們稱(chēng)之為“抽屜原理”?!俺閷显怼弊钕仁?9世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷運(yùn)用于解決數(shù)學(xué)問(wèn)題的,所以又稱(chēng)“狄利克雷原理”,也稱(chēng)之為“鴿巢問(wèn)題”?!傍澇矄?wèn)題”的理論本身并不復(fù)雜,甚至可以說(shuō)是顯而易見(jiàn)的。但“鴿巢問(wèn)題”的應(yīng)用卻是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的`結(jié)論。因此,“鴿巢問(wèn)題”在數(shù)論、集合論、組合論中都得到了廣泛的應(yīng)用。
1、知識(shí)與技能:引導(dǎo)學(xué)生通過(guò)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng),經(jīng)歷探究“鴿巢原理”的過(guò)程,初步了解“鴿巢原理”的含義,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、過(guò)程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過(guò)程,體驗(yàn)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng)的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。
3、情感態(tài)度與價(jià)值觀:
(1)體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體驗(yàn)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂(lè)趣。
(2)理解知識(shí)的產(chǎn)生過(guò)程,受到歷史唯物注意的教育。
(3)感受數(shù)學(xué)在實(shí)際生活中的作用,培養(yǎng)刻苦鉆研、探究新知的良好品質(zhì)。
重點(diǎn):應(yīng)用“鴿巢原理”解決實(shí)際問(wèn)題。引導(dǎo)學(xué)會(huì)把具體問(wèn)題轉(zhuǎn)化成“鴿巢問(wèn)題”。
難點(diǎn):理解“鴿巢原理”,找出”鴿巢問(wèn)題“解決的竅門(mén)進(jìn)行反復(fù)推理。
這個(gè)問(wèn)題同“鴿巢原理”結(jié)合起來(lái),是本次教學(xué)能否成功的關(guān)鍵。所以,在教學(xué)中,應(yīng)有意識(shí)地讓學(xué)生理解“鴿巢原理”的“一般化模型”。六年級(jí)的學(xué)生理解能力、學(xué)習(xí)能力和生活經(jīng)驗(yàn)已達(dá)到能夠掌握本章內(nèi)容的程度。教材選取的是學(xué)生熟悉的,易于理解的生活實(shí)例,將具體實(shí)際與數(shù)學(xué)原理結(jié)合起來(lái),有助于提高學(xué)生的邏輯思維能力和解決實(shí)際問(wèn)題的能力。
1、讓學(xué)生經(jīng)歷“數(shù)學(xué)證明”的過(guò)程??梢怨膭?lì)、引導(dǎo)學(xué)生借助學(xué)具、實(shí)物操作或畫(huà)草圖的`方式進(jìn)行“說(shuō)理”。通過(guò)“說(shuō)理”的方式理解“鴿巢原理”的過(guò)程是一種數(shù)學(xué)證明的雛形。通過(guò)這樣的方式,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。
2、有意識(shí)地培養(yǎng)學(xué)生的“模型”思想。當(dāng)我們面對(duì)一個(gè)具體的問(wèn)題時(shí),能否將這個(gè)具體問(wèn)題和“鴿巢原理”聯(lián)系起來(lái),能否找到該問(wèn)題中的具體情境與“鴿巢原理”的“一般化模型”之間的內(nèi)在關(guān)系,找出該問(wèn)題中什么是“待分的東西”,什么是“鴿巢”,是解決問(wèn)題的關(guān)鍵。教學(xué)時(shí),要引導(dǎo)學(xué)生先判斷某個(gè)問(wèn)題是否屬于用“鴿巢原理”可以解決的范疇;再思考如何尋找隱藏在其背后的“鴿巢問(wèn)題”的一般模型。這個(gè)過(guò)程是學(xué)生經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,從紛繁復(fù)雜的現(xiàn)實(shí)素材中找出最本質(zhì)的數(shù)學(xué)模型,是學(xué)生數(shù)學(xué)思維和能力的重要體現(xiàn)。
3、要適當(dāng)把握教學(xué)要求?!傍澇苍怼北旧砘蛟S并不復(fù)雜,但它的應(yīng)用廣泛且靈活多變。因此,用“鴿巢原理”解決實(shí)際問(wèn)題時(shí),經(jīng)常會(huì)遇到一些困難。例如,有時(shí)要找到實(shí)際問(wèn)題與“鴿巢原理”之間的聯(lián)系并不容易,即使找到了,也很難確定用什么作為“鴿巢”,要用幾個(gè)“鴿巢”。因此,教學(xué)時(shí),不必過(guò)于要求學(xué)生“說(shuō)理”的嚴(yán)密性,只要能結(jié)合具體問(wèn)題,把大致意思說(shuō)出來(lái)就可以了,鼓勵(lì)學(xué)生借助實(shí)物操作等直觀方式進(jìn)行猜測(cè)、驗(yàn)證。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十八
1.1知識(shí)與技能:
1.初步了解“抽屜原理”,會(huì)運(yùn)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題或解釋相關(guān)的現(xiàn)象。2.通過(guò)操作、觀察、比較、推理等數(shù)學(xué)活動(dòng),引導(dǎo)學(xué)生理解并掌握這一類(lèi)“抽屜原理”的一般規(guī)律。
1.2過(guò)程與方法:
經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,體會(huì)比較的學(xué)習(xí)方法。
1.3情感態(tài)度與價(jià)值觀:
感受數(shù)學(xué)的魅力,提高學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用意識(shí),培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
2.教學(xué)重點(diǎn)/難點(diǎn)。
2.1教學(xué)重點(diǎn)。
經(jīng)歷抽屜原理的探究過(guò)程,理解抽屜原理,靈活運(yùn)用抽屜原理解決生活中的簡(jiǎn)單問(wèn)題。
2.2教學(xué)難點(diǎn)。
理解“總有”、“至少”,構(gòu)建“抽屜原理”的數(shù)學(xué)模型,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以模型化。
3.教學(xué)用具。
多媒體課件,鉛筆,筆筒,一副撲克牌。
4.標(biāo)簽。
教學(xué)過(guò)程。
一、開(kāi)門(mén)見(jiàn)山,引入課題。
學(xué)生提出問(wèn)題:什么是抽屜原理?怎樣研究抽屜原理?抽屜原理有什么用?等等。師:同學(xué)們都很愛(ài)提問(wèn)題,也很會(huì)提問(wèn)題,這節(jié)課我們就帶著這些問(wèn)題來(lái)研究。
二、自主探究,構(gòu)建模型。
1.教學(xué)例1,初步感知,體驗(yàn)方法,概括規(guī)律。
師:我們先從簡(jiǎn)單的例子入手,請(qǐng)看,如果把4個(gè)小球放進(jìn)3個(gè)抽屜里,我可以肯定地說(shuō),不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球。
稍加停頓。
師:“總有”是什么意思?
生:一定有。
師:“至少放2個(gè)小球”你是怎樣理解的?
生:最少放2個(gè)小球,也可以放3個(gè)、4個(gè)。
師:2個(gè)或比2個(gè)多,我們就說(shuō)“至少放2個(gè)小球”。
師:老師說(shuō)的這句話對(duì)嗎?我們得需要驗(yàn)證,怎么驗(yàn)證呢?華羅庚說(shuō)過(guò)不懂就畫(huà)圖,下面請(qǐng)同學(xué)們用圓形代替小球,用長(zhǎng)方形代替抽屜,畫(huà)一畫(huà),看有幾種不同的方法。也可以尋求其他的方法驗(yàn)證,聽(tīng)明白了嗎?開(kāi)始吧!
學(xué)生活動(dòng),教師巡視指導(dǎo)。
匯報(bào)交流。
師:哪位同學(xué)愿意把你的方法分享給大家?
一生上前匯報(bào)。
生1:可以在第一個(gè)抽屜里放4個(gè)小球,其他兩個(gè)抽屜空著。
師:這4個(gè)小球一定要放在第一個(gè)抽屜里嗎?
生:不一定,也可以放在其他兩個(gè)抽屜里。
師:看來(lái)不管怎么放,總有一個(gè)抽屜里放進(jìn)4個(gè)小球。這種放法可以簡(jiǎn)單的記作4,0,0。不好意思,接著介紹吧。
生:第二種方法是第一個(gè)抽屜里放3個(gè)小球,第二個(gè)抽屜里放1個(gè),第三個(gè)抽屜空著,也就是3,1,0;第三種方法是2,2,0;第四種方法是2,1,1。
(此環(huán)節(jié)可以先讓一名學(xué)生匯報(bào),其他學(xué)生補(bǔ)充、評(píng)價(jià))。
師:他找到了4種不同的方法,誰(shuí)來(lái)評(píng)一評(píng)?
生2:他找的很全,并且排列的有序。
師:除了這4種放法,還有沒(méi)有不同的放法?(沒(méi)有)謝謝你的精彩展示,請(qǐng)回??磥?lái),把4個(gè)小球放進(jìn)3個(gè)抽屜里,就有這4種不同的方法。同學(xué)們真不簡(jiǎn)單,一下子就找到了4種放法。
出示課件,展示4種方法。
生:第一種放法有一個(gè)抽屜里放4個(gè),大于2,符合至少2個(gè),第二種放法有一個(gè)抽屜里放3個(gè),也大于2,符合至少2個(gè),第三種放法有一個(gè)抽屜里放2個(gè),符合至少2個(gè),第四種放法有一個(gè)抽屜里放2個(gè),符合至少2個(gè)。所以,總有一個(gè)抽屜里至少放兩個(gè)小球。
師:說(shuō)得有理有據(jù)。誰(shuí)愿意再解釋解釋?zhuān)浚ㄔ僬乙幻麑W(xué)生解釋?zhuān)?/p>
師:原來(lái)呀!這兩位同學(xué)關(guān)注的都是每種方法當(dāng)中放的最——多的抽屜,分別放了幾個(gè)小球?(4個(gè)、3個(gè)、2個(gè)、2個(gè))最少放了幾個(gè)?(2個(gè)),最少2個(gè),有的超過(guò)了2個(gè),我們就說(shuō)至少2個(gè)。確實(shí),不管怎么放,我們都找到了這樣的一個(gè)抽屜,里面至少放2個(gè)小球??磥?lái),老師的猜測(cè)對(duì)不對(duì)?(對(duì))是正確的!
生1:把小球分散地放,每個(gè)抽屜里先放1個(gè)小球?剩下的1個(gè)小球任意放在其中的一個(gè)抽屜里,這樣總有一個(gè)抽屜里至少放了兩個(gè)小球。
生2:先把小球平均放,余下的1個(gè)小球不管放在哪個(gè)抽屜里,一定會(huì)出現(xiàn)總有一個(gè)抽屜里至少放了2個(gè)小球。
師:每個(gè)抽屜里先放1個(gè)小球,也就是我們以前學(xué)過(guò)的怎么分?
生:平均分。
師:為什么要先平均分?
生:先平均分,就能使每個(gè)抽屜里的小球放得均勻,都比較少,再把余下的1個(gè)小球任意放在其中的一個(gè)抽屜中,這樣一定會(huì)出現(xiàn)“總有一個(gè)抽屜至少放了2個(gè)小球”。
課件演示。
3=1……1,1+1=2。生:4÷。
3=1……1,1+1=2教師隨機(jī)板書(shū):4÷。
師:這兩個(gè)“1”表示的意思一樣嗎?
生:不一樣,第一個(gè)“1”表示每個(gè)抽屜里分得的1個(gè)小球,第二個(gè)“1”表示剩下的那個(gè)小球,可以放在任意一個(gè)抽屜里。
師:第一個(gè)“1”就是先分得的1個(gè)小球,也就是除法中的商,第二個(gè)“1”是剩下的1個(gè)小球,可以任意放在其中的一個(gè)抽屜中。瞧,用算式來(lái)表示多么地簡(jiǎn)潔明了。
生:第四種放法出現(xiàn)的情況。
師:你認(rèn)為用列舉法和假設(shè)法進(jìn)行驗(yàn)證,哪種方法比較簡(jiǎn)便?為什么?
生:假設(shè)法,列舉法需要把所有的情況都一一列舉出來(lái),假設(shè)法只需要研究一種情況,并且可以用算式簡(jiǎn)明地表示出來(lái)。
生:2個(gè),先往每個(gè)抽屜里放一個(gè)小球,這樣還剩下1個(gè),剩下的1個(gè)小球任意放在一個(gè)其中的一個(gè)抽屜里,這樣,不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球。
師:把6個(gè)小球放進(jìn)5個(gè)抽屜里,總有一個(gè)抽屜里至少放幾個(gè)小球呢?
5=1……1,1+1=2,還是總有一個(gè)抽屜里至少放2個(gè)小球。生:6÷。
師:把7個(gè)小球放進(jìn)6個(gè)抽屜里呢?
生:總有一個(gè)抽屜里至少放2個(gè)小球。
師:接著往后想,你能繼續(xù)說(shuō)嗎?
生1:小球個(gè)數(shù)和抽屜個(gè)數(shù)都依次增加1,總有一個(gè)抽屜里至少放的小球個(gè)數(shù)都是2.生2:當(dāng)小球的個(gè)數(shù)比抽屜數(shù)多1時(shí),不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球。師:你們真善于概括總結(jié)!
2.教學(xué)例2,深入研究,提升思維,構(gòu)建模型。
師:剛才我們研究了小球數(shù)比抽屜數(shù)多1時(shí),總有一個(gè)抽屜至少放2個(gè)小球,當(dāng)小球數(shù)比抽屜數(shù)多2、多3,甚至更多,又會(huì)出現(xiàn)什么情況呢?想不想繼續(xù)研究?(想)。
5=1……2,1+2=3。生1:7÷。
師:有不同意見(jiàn)嗎?
5=1……2,1+1=2。生2:7÷。
5=1……2,不同點(diǎn)是一位同學(xué)認(rèn)師:出現(xiàn)了兩種不同的聲音,這兩位同學(xué)都是用7÷。
生3:我贊同1+1=2。因?yàn)橛嘞碌?個(gè)還要分到不同的抽屜里,所以總有一個(gè)抽屜至少放2個(gè)小球。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇十九
教科書(shū)第68頁(yè)例1。
(一)知識(shí)與技能:通過(guò)數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。
(二)過(guò)程與方法:結(jié)合具體的實(shí)際問(wèn)題,通過(guò)實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過(guò)獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問(wèn)題的能力。
(三)情感態(tài)度和價(jià)值觀:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過(guò)程中,讓學(xué)生切實(shí)體會(huì)到探索的樂(lè)趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。
教學(xué)重點(diǎn):經(jīng)歷鴿巢問(wèn)題的探究過(guò)程,初步了解鴿巢原理,會(huì)用鴿巢原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):通過(guò)操作發(fā)展學(xué)生的類(lèi)推能力,形成比較抽象的數(shù)學(xué)思維。
多媒體課件。
同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問(wèn)題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與大家分享一下。
好,咱們班人數(shù)已到齊,從今天開(kāi)始,我們學(xué)習(xí)第五單元鴿巢問(wèn)題,這節(jié)課通過(guò)數(shù)學(xué)活動(dòng)我們來(lái)了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。你準(zhǔn)備好了嗎?好,我們現(xiàn)在開(kāi)始上課。
1、請(qǐng)同學(xué)們先來(lái)看例1。把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2只鉛筆。
請(qǐng)你再把題讀一次,這是為什么呢?
對(duì)總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說(shuō)最少有兩支鉛筆。或者是說(shuō),鉛筆的支數(shù)要大于或等于兩支。
課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個(gè)筆筒中有幾種擺法呢?”這兒老師收集到了各組組長(zhǎng)整理出的大家的各種擺法,我們一起來(lái)看一看吧!
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個(gè)數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無(wú)論是擺還是寫(xiě)都是把方法枚舉出來(lái),在數(shù)學(xué)中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個(gè)情況呢?
方法二:用“假設(shè)法”證明。
對(duì),我們可以這樣想,如果在每個(gè)筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒。這時(shí)無(wú)論放在哪個(gè)筆筒,那個(gè)筆筒中就有2支,所以總有一個(gè)筆筒中至少放進(jìn)2支鉛筆。(平均分)。
方法三:列式計(jì)算。
你能用算式表示這個(gè)方法嗎?
學(xué)生列出式子并說(shuō)一說(shuō)算式中商與余數(shù)各表示什么意思?
2、把5支鉛筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設(shè)法、列式計(jì)算。
3、100支鉛筆,放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少要放進(jìn)多少支鉛筆呢?
還能有枚舉法嗎?對(duì),不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時(shí)候用起來(lái)比較麻煩??梢杂眉僭O(shè)法和列式計(jì)算。
4、表格中通過(guò)整理,總結(jié)規(guī)律。
你發(fā)現(xiàn)了什么規(guī)律?
當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時(shí),至少數(shù)等于2“商+1”。
經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,我把我們的這一發(fā)現(xiàn),稱(chēng)為筆筒問(wèn)題。但其實(shí)最早發(fā)現(xiàn)這個(gè)規(guī)律的不是我們,而是德國(guó)的一個(gè)數(shù)學(xué)家“狄里克雷”。
好,我們做幾道題檢測(cè)一下你們的學(xué)習(xí)效果。
1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?
3、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
今天你有什么收獲呢?
作業(yè):兩導(dǎo)兩練第70頁(yè)、71頁(yè)實(shí)踐應(yīng)用1、4題。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇二十
審定人教版六年級(jí)下冊(cè)數(shù)學(xué)《數(shù)學(xué)廣角鴿巢問(wèn)題》,也就是原實(shí)驗(yàn)教材《抽屜原理》。
《鴿巢問(wèn)題》既鴿巢原理又稱(chēng)抽屜原理,它是組合數(shù)學(xué)的一個(gè)基本原理,最先是由德國(guó)數(shù)學(xué)家狄利克雷明確提出來(lái)的,因此,也稱(chēng)為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€(gè)筒至少放進(jìn)2支筆”這句話對(duì)于學(xué)生而言,不僅說(shuō)起來(lái)生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺(jué)得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過(guò)操作,最直觀地呈現(xiàn)“總有一個(gè)筒至少放進(jìn)2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動(dòng)性,讓學(xué)生在證明結(jié)論的過(guò)程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動(dòng)者,特別是這種原理的初步認(rèn)識(shí),不應(yīng)該是教師牽著學(xué)生去認(rèn)識(shí),而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問(wèn)題,讓學(xué)生在具體的操作中來(lái)證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過(guò)程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說(shuō)理的嚴(yán)密性,也不需要學(xué)生確定過(guò)于抽象的“鴿巢”和“物體”。
《鴿巢問(wèn)題》這是一類(lèi)與“存在性”有關(guān)的問(wèn)題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們?cè)谕粋€(gè)月過(guò)生日。在這類(lèi)問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說(shuō)明通過(guò)什么方式把這個(gè)存在的物體(或人)找出來(lái)。這類(lèi)問(wèn)題依據(jù)的理論,我們稱(chēng)之為“鴿巢問(wèn)題”。
通過(guò)第一個(gè)例題教學(xué),介紹了較簡(jiǎn)單的“鴿巢問(wèn)題”:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢至少放進(jìn)2個(gè)物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個(gè)筒至少放進(jìn)2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過(guò)前一個(gè)例題的兩個(gè)層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡(jiǎn)單的具體問(wèn)題中解釋證明。
第二個(gè)例題是在例1的基礎(chǔ)上說(shuō)明:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體。因此我認(rèn)為例2的目的是使學(xué)生進(jìn)一步理解“盡量平均分”,并能用有余數(shù)的'除法算式表示思維的過(guò)程。
可能有一部分學(xué)生已經(jīng)了解了鴿巢問(wèn)題,他們?cè)诰唧w分得過(guò)程中,都在運(yùn)用平均分的方法,也能就一個(gè)具體的問(wèn)題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒(méi)有接觸,所以他們可能會(huì)認(rèn)為至少的情況就應(yīng)該是“1”。
1.通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。滲透“建模”思想。
2.經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3.通過(guò)“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢原理”。
理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
教具準(zhǔn)備:相關(guān)課件相關(guān)學(xué)具(若干筆和筒)。
游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫(xiě)在手心上,寫(xiě)好后,握緊拳頭不要松開(kāi),讓老師猜。
1.具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
(1)學(xué)生匯報(bào)結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說(shuō),“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆?!?。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
2.假設(shè)法,用“平均分”來(lái)演繹“鴿巢問(wèn)題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報(bào)。
2匯報(bào)想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
1.課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過(guò)程。]。
根據(jù)學(xué)生回答板書(shū):5÷2=2……1。
(學(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書(shū):至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2.師依次創(chuàng)設(shè)疑問(wèn):7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書(shū))。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書(shū),同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
板書(shū):至少數(shù)=商+1。
師過(guò)渡語(yǔ):同學(xué)們的這一發(fā)現(xiàn),稱(chēng)為“鴿巢問(wèn)題”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱(chēng)“狄里克雷原理”,也稱(chēng)為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
課件出示習(xí)題:
1.三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
2.五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
3.從電影院中任意找來(lái)13個(gè)觀眾,至少有兩個(gè)人屬相相同。
……。
[設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇二十一
《鴿巢問(wèn)題》既鴿巢原理又稱(chēng)抽屜原理,它是組合數(shù)學(xué)的一個(gè)基本原理,最先是由德國(guó)數(shù)學(xué)家狄利克雷明確提出來(lái)的,因此,也稱(chēng)為狄利克雷原理。
首先,用具體的操作,將抽象變?yōu)橹庇^?!翱傆幸粋€(gè)筒至少放進(jìn)2支筆”這句話對(duì)于學(xué)生而言,不僅說(shuō)起來(lái)生澀拗口,而且抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺(jué)得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”;二在操作中理解“平均分”是保證“至少”的最好方法。通過(guò)操作,最直觀地呈現(xiàn)“總有一個(gè)筒至少放進(jìn)2支筆”這種現(xiàn)象,讓學(xué)生理解這句話。
其次,充分發(fā)揮學(xué)生主動(dòng)性,讓學(xué)生在證明結(jié)論的過(guò)程中探究方法,總結(jié)規(guī)律。學(xué)生是學(xué)習(xí)的主動(dòng)者,特別是這種原理的初步認(rèn)識(shí),不應(yīng)該是教師牽著學(xué)生去認(rèn)識(shí),而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問(wèn)題,讓學(xué)生在具體的操作中來(lái)證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過(guò)程,逐步提高學(xué)生的邏輯思維能力。
再者,適當(dāng)把握教學(xué)要求。我們的教學(xué)不同奧數(shù),因此在教學(xué)中不需要求學(xué)生說(shuō)理的嚴(yán)密性,也不需要學(xué)生確定過(guò)于抽象的“鴿巢”和“物體”。
《鴿巢問(wèn)題》這是一類(lèi)與“存在性”有關(guān)的問(wèn)題,如任意13名學(xué)生,一定存在兩名學(xué)生,他們?cè)谕粋€(gè)月過(guò)生日。在這類(lèi)問(wèn)題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說(shuō)明通過(guò)什么方式把這個(gè)存在的物體(或人)找出來(lái)。這類(lèi)問(wèn)題依據(jù)的理論,我們稱(chēng)之為“鴿巢問(wèn)題”。
通過(guò)第一個(gè)例題教學(xué),介紹了較簡(jiǎn)單的“鴿巢問(wèn)題”:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢至少放進(jìn)2個(gè)物體。它意圖讓學(xué)生發(fā)現(xiàn)這樣的一種存在現(xiàn)象:不管怎樣放,總有一個(gè)筒至少放進(jìn)2支筆。呈現(xiàn)兩種思維方法:一是枚舉法,羅列了擺放的所有情況。二是假設(shè)法,用平均分的方法直接考慮“至少”的情況。通過(guò)前一個(gè)例題的兩個(gè)層次的探究,讓學(xué)生理解“平均分”的方法能保證“至少”的情況,能用這種方法在簡(jiǎn)單的具體問(wèn)題中解釋證明。
第二個(gè)例題是在例1的基礎(chǔ)上說(shuō)明:只要物體數(shù)比鴿巢數(shù)多,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體。因此我認(rèn)為例2的目的是使學(xué)生進(jìn)一步理解“盡量平均分”,并能用有余數(shù)的除法算式表示思維的過(guò)程。
可能有一部分學(xué)生已經(jīng)了解了鴿巢問(wèn)題,他們?cè)诰唧w分得過(guò)程中,都在運(yùn)用平均分的方法,也能就一個(gè)具體的問(wèn)題得出結(jié)論。但是這些學(xué)生中大多數(shù)只“知其然,不知其所以然”,為什么平均分能保證“至少”的情況,他們并不理解。還有部分學(xué)生完全沒(méi)有接觸,所以他們可能會(huì)認(rèn)為至少的情況就應(yīng)該是“1”。
1、通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢問(wèn)題”,會(huì)用“鴿巢原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。滲透“建?!彼枷?。
2、經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3、通過(guò)“鴿巢原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
經(jīng)歷“鴿巢問(wèn)題”的探究過(guò)程,初步了解“鴿巢原理”。
理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
游戲規(guī)則是:請(qǐng)這四位同學(xué)從數(shù)字1.2.3中任選一個(gè)自己喜歡的數(shù)字寫(xiě)在手心上,寫(xiě)好后,握緊拳頭不要松開(kāi),讓老師猜。
1、具體操作,感知規(guī)律。
教學(xué)例1:4支筆,三個(gè)筒,可以怎么放?請(qǐng)同學(xué)們運(yùn)用實(shí)物放一放,看有幾種擺放方法?
(1)學(xué)生匯報(bào)結(jié)果。
(4,0,0)(3,1,0)(2,2,0)(2,1,1)。
(2)師生交流擺放的結(jié)果。
(3)小結(jié):不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆。
(學(xué)情預(yù)設(shè):學(xué)生可能不會(huì)說(shuō),“不管怎么放,總有一個(gè)筒里至少放進(jìn)了2支筆?!?。
質(zhì)疑:我們能不能找到一種更為直接的方法,只擺一次,也能得到這個(gè)結(jié)論的方法呢?
2、假設(shè)法,用“平均分”來(lái)演繹“鴿巢問(wèn)題”。
1思考,同桌討論:要怎么放,只放一次,就能得出這樣的結(jié)論?
學(xué)生思考——同桌交流——匯報(bào)。
2匯報(bào)想法。
預(yù)設(shè)生1:我們發(fā)現(xiàn)如果每個(gè)筒里放1支筆,最多放4支,剩下的1支不管放進(jìn)哪一個(gè)筒里,總有一個(gè)筒里至少有2支筆。
3學(xué)生操作演示分法,明確這種分法其實(shí)就是“平均分”。
1、課件出示第二個(gè)例題:5只鴿子飛回2個(gè)鴿巢呢?至少有幾只鴿子飛進(jìn)同一個(gè)鴿巢里?應(yīng)該怎樣列式“平均分”。
[設(shè)計(jì)意圖:引導(dǎo)學(xué)生用平均分思想,并能用有余數(shù)的除法算式表示思維的過(guò)程。]。
根據(jù)學(xué)生回答板書(shū):5÷2=2……1。
(學(xué)情預(yù)設(shè):會(huì)有一些學(xué)生回答,至少數(shù)=商+余數(shù)至少數(shù)=商+1)。
根據(jù)學(xué)生回答,師邊板書(shū):至少數(shù)=商+余數(shù)?
至少數(shù)=商+1?
2、師依次創(chuàng)設(shè)疑問(wèn):7只鴿子飛回5個(gè)鴿巢呢?8只鴿子飛回5個(gè)鴿巢呢?9只鴿子飛回5個(gè)鴿巢呢?(根據(jù)回答,依次板書(shū))。
……。
7÷5=1……2。
8÷5=1……3。
9÷5=1……4。
觀察板書(shū),同學(xué)們有什么發(fā)現(xiàn)嗎?
得出“物體的數(shù)量大于鴿巢的數(shù)量,總有一個(gè)鴿巢里至少放進(jìn)(商+1)個(gè)物體”的結(jié)論。
板書(shū):至少數(shù)=商+1。
師過(guò)渡語(yǔ):同學(xué)們的這一發(fā)現(xiàn),稱(chēng)為“鴿巢問(wèn)題”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱(chēng)“狄里克雷原理”,也稱(chēng)為“鴿巢原理”。這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!傍澇苍怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
課件出示習(xí)題.:
1、三個(gè)小朋友同行,其中必有幾個(gè)小朋友性別相同。
2、五年一班共有學(xué)生53人,他們的年齡都相同,請(qǐng)你證明至少有兩個(gè)小朋友出生在同一周。
3、從電影院中任意找來(lái)13個(gè)觀眾,至少有兩個(gè)人屬相相同。
[設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。]。
這節(jié)課我們學(xué)習(xí)了什么有趣的規(guī)律?請(qǐng)學(xué)生暢談,師總結(jié)。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇二十二
“鴿巢”問(wèn)題就是“抽屜原理”,教材通過(guò)三個(gè)例題來(lái)呈現(xiàn)本章知識(shí),“鴿巢”問(wèn)題教學(xué)反思。例1:本例描述“抽屜原理”的最簡(jiǎn)單的情況,例2:本例描述“抽屜原理”更為一般的形式,例3:跟之前教材的編排是一樣的,是抽屜原理的一個(gè)逆向的應(yīng)用。本節(jié)內(nèi)容實(shí)際上是一種解決某種特定結(jié)構(gòu)的數(shù)學(xué)或生活問(wèn)題的模型,體現(xiàn)了一種數(shù)學(xué)的思想方法。讓學(xué)生經(jīng)歷將具體問(wèn)題數(shù)學(xué)化的過(guò)程,初步形成模型思想,體會(huì)和理解數(shù)學(xué)與外部世界的緊密聯(lián)系,發(fā)展抽象能力、推理能力和應(yīng)用能力,是課標(biāo)的重要要求。
興趣是學(xué)習(xí)最好的老師。所以在本節(jié)課我認(rèn)真鉆研教材,吃透教材,盡量找到好的方法引課,在網(wǎng)上搜索了一個(gè)較好的引課設(shè)計(jì),就照搬了:“同學(xué)們:在上新課之前,我們來(lái)做個(gè)“搶凳子”游戲怎么樣?想?yún)⑴c這個(gè)游戲的請(qǐng)舉手。叫舉手的一男一女兩個(gè)同學(xué)上臺(tái),然后問(wèn),老師想叫三位同學(xué)玩這個(gè)游戲,但是現(xiàn)在已有兩個(gè),你們說(shuō)最后一個(gè)是叫男生還是女生呢?”同學(xué)們回答后,老師就說(shuō):“不管是男生還是女生,總有二個(gè)同學(xué)的性別是一樣的,你們同意嗎?”并通過(guò)三人“搶凳子”游戲得出不管怎樣搶“總有一根凳子至少有兩個(gè)同學(xué)”。借機(jī)引入本節(jié)課的重點(diǎn)“總有……至少……”。這樣設(shè)計(jì)使學(xué)生在生動(dòng)、活潑的數(shù)學(xué)活動(dòng)中主動(dòng)參與。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)篇二十三
1、引導(dǎo)學(xué)生經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理,會(huì)運(yùn)用鴿巢原理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
2、通過(guò)操作、觀察、比較、列舉、假設(shè)、推理等活動(dòng)發(fā)展學(xué)生的類(lèi)推能力,形成比較抽象的數(shù)學(xué)思維。
3、使學(xué)生經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,初步形成模型思想。
經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理。
理解鴿巢原理,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以模型化。
1、師:同學(xué)們,你們玩過(guò)撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學(xué)隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)。
2、師:大家猜對(duì)了嗎?其實(shí)這里面藏著一個(gè)非常有趣的數(shù)學(xué)問(wèn)題,叫做“鴿巢問(wèn)題”。今天我們就一起來(lái)研究它。
師:研究一個(gè)數(shù)學(xué)問(wèn)題,我們通常從簡(jiǎn)單一點(diǎn)的情況開(kāi)始入手研究。請(qǐng)看大屏幕。(生齊讀題目)。
1、教學(xué)例1:把4支鉛筆放進(jìn)3個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
(1)理解“總有”、“至少”的含義。(ppt)總有:一定有至少:最少。
師:這個(gè)結(jié)論正確嗎?我們要?jiǎng)邮謥?lái)驗(yàn)證一下。
探究之前,老師有幾個(gè)要求。(一生讀要求)。
(3)匯報(bào)展示方法,證明結(jié)論。(展示兩張作品,其中一張是重復(fù)擺的。)。
第一張作品:誰(shuí)看懂他是怎么擺的?(一生匯報(bào),發(fā)現(xiàn)重復(fù)的擺法)。
第二張作品:他是怎么擺的?這4種擺法有沒(méi)有重復(fù)的?還有其他的擺法嗎?板書(shū):(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
師:我們要證明的是總有一個(gè)筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報(bào):第一種擺法中哪個(gè)筆筒滿足要求?只要發(fā)現(xiàn)有一個(gè)筆筒里至少有2支鉛筆就行了。)。
總結(jié):把4支鉛筆放進(jìn)3個(gè)筆筒中一共只有四種情況,在每一種情況中,都一定有一個(gè)筆筒中至少有2支鉛筆。看來(lái)這個(gè)結(jié)論是正確的。
師:像這樣把所有情況一一列舉出來(lái)的方法,數(shù)學(xué)上叫做“枚舉法”。(板書(shū))。
(4)通過(guò)比較,引出“假設(shè)法”
引導(dǎo)學(xué)生說(shuō)出:假設(shè)先在每個(gè)筆筒里放1支,還剩下1支,這時(shí)無(wú)論放到哪個(gè)筆筒,那個(gè)筆筒里就有2支鉛筆了。(ppt演示)。
(5)初步建模—平均分。
師:先在每個(gè)筆筒里放1支,這種分法實(shí)際上是怎么分的?
生:平均分(師板書(shū))。
師:為什么要去平均分呢?平均分有什么好處?
生:平均分可以保證每個(gè)筆筒里的筆數(shù)量一樣,盡可能的少。這樣多出來(lái)的1支不管放進(jìn)哪個(gè)筆筒里,總有一個(gè)筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個(gè)筆筒里,這樣就不能保證一下子找到最少的情況了)。
師:這種先平均分的方法叫做“假設(shè)法”。怎么用算式表示這種方法呢?
板書(shū):4÷3=1……11+1=2。
師:現(xiàn)在我們把題目改一改,結(jié)果會(huì)怎樣呢?
ppt出示:把5支筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有幾支筆?(引導(dǎo)學(xué)生說(shuō)清楚理由)。
師:為什么大家都選擇用假設(shè)法來(lái)分析?(假設(shè)法更直接、簡(jiǎn)單)。
通過(guò)這些問(wèn)題,你有什么發(fā)現(xiàn)?
交流總結(jié):只要筆的數(shù)量比筆筒數(shù)量多1,總有一個(gè)筆筒里至少放進(jìn)2支筆。
過(guò)渡語(yǔ):師:如果多出來(lái)的數(shù)量不是1,結(jié)果會(huì)怎樣呢?
2、出示:5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠里至少飛進(jìn)了幾只鴿子呢?
(1)同桌討論交流、指名匯報(bào)。
先讓一生說(shuō)出5÷3=1……21+2=3的結(jié)果,再問(wèn):有不同的意見(jiàn)嗎?
再讓一生說(shuō)出5÷3=1……21+1=2。
師:你們同意哪種想法?
(2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?
(3)明確:再次平均分,才能保證“至少”的情況。
(1)師:我們剛才研究的把筆放入筆筒、鴿子飛進(jìn)鴿籠這樣的問(wèn)題就叫做“鴿巢問(wèn)題”,也叫“抽屜問(wèn)題”。它最早是由德國(guó)數(shù)學(xué)家狄利克雷發(fā)現(xiàn)并提出的,當(dāng)他發(fā)現(xiàn)這個(gè)問(wèn)題之后決定繼續(xù)深入研究下去。出示例2。
(2)獨(dú)立思考后指名匯報(bào)。
師板書(shū):7÷3=2……12+1=3。
(3)如果有8本書(shū)會(huì)怎樣?10本書(shū)呢?
指名回答,師相機(jī)板書(shū):8÷3=2……22+1=3。
師:剩下的2本怎么放才更符合“至少”的要求?
為什么不能用商+2?
10÷3=3……13+1=4。
(4)觀察發(fā)現(xiàn)、總結(jié)規(guī)律。
歸納總結(jié):總有一個(gè)抽屜里至少可以放“商+1”本書(shū)。(板書(shū):商+1)。
師:利用鴿巢問(wèn)題中這個(gè)原理可以解釋生活中很多有趣的問(wèn)題。
1、做一做第1、2題。
2、用抽屜原理解釋“撲克表演”。
說(shuō)清楚把4種花色看作抽屜,5張牌看作要放進(jìn)的書(shū)。
通過(guò)這節(jié)課的學(xué)習(xí),你有什么收獲或感想?
【本文地址:http://aiweibaby.com/zuowen/17986255.html】