總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導性的經(jīng)驗方法以及結(jié)論的書面材料,它可以使我們更有效率,不妨坐下來好好寫寫總結(jié)吧。那么我們該如何寫一篇較為完美的總結(jié)呢?下面是小編帶來的優(yōu)秀總結(jié)范文,希望大家能夠喜歡!
中考數(shù)學考點歸納總結(jié)篇一
1.十字相乘法
(1)把二次項系數(shù)和常數(shù)項分別分解因數(shù);
(2)嘗試十字圖,使經(jīng)過十字交叉線相乘后所得的數(shù)的和為一次項系數(shù);
(3)確定合適的十字圖并寫出因式分解的結(jié)果;
(4)檢驗。
2.提公因式法
(1)找出公因式;
(2)提公因式并確定另一個因式;
①找公因式可按照確定公因式的方法先確定系數(shù)再確定字母;
②提公因式并確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;
③提完公因式后,另一因式的項數(shù)與原多項式的項數(shù)相同。
3.待定系數(shù)法
(1)確定所求問題含待定系數(shù)的一般解析式;
(2)根據(jù)恒等條件,列出一組含待定系數(shù)的方程;
(3)解方程或消去待定系數(shù),從而使問題得到解決。
中考數(shù)學考點歸納總結(jié)篇二
軸對稱知識點
1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關(guān)于某條直線的軸對稱圖形的步驟:找到關(guān)鍵點,畫出關(guān)鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關(guān)于x軸對稱的點的坐標為(x,-y)
點(x,y)關(guān)于y軸對稱的點的坐標為(-x,y)
點(x,y)關(guān)于原點軸對稱的點的坐標為(-x,-y)
9.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內(nèi)角相等,等于60,
12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60的等腰三角形是等邊三角形
有兩個角是60的三角形是等邊三角形。
13.直角三角形中,30角所對的直角邊等于斜邊的一半。
中考數(shù)學考點歸納總結(jié)篇三
不等式
1.掌握不等式的基本性質(zhì),并會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,即:如果a>b,并且c<0,那么ac
2.比較大小:(a、b分別表示兩個實數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。
4.不等式的解集在數(shù)軸上的表示:用數(shù)軸表示不等式的解集時,要確定邊界和方向:①邊界:有等號的是實心圓圈,無等號的是空心圓圈;②方向:大向右,小向左。
一元一次方程的解法
1.一般方法:
①去分母:去分母是指等式兩邊同時乘以分母的最小公倍數(shù)。
②去括號:括號前是“+”,把括號和它前面的“+”去掉后,原括號里各項的符號都不改變。括號前是“-”,把括號和它前面的"-"去掉后,原括號里各項的符號都要改變。(改成與原來相反的符號。
③移項:把方程兩邊都加上(或減去)同一個數(shù)或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。
④合并同類項:通過合并同類項把一元一次方程式化為最簡單的形式:ax=b(a≠0)。
⑤系數(shù)化為1。
2.圖像法:一元一次方程ax+b=0(a≠0)的根就是它所對應的一次函數(shù)f(x)=ax+b函數(shù)值為0時,自變量x的值,即一次函數(shù)圖象與x軸交點的橫坐標。
3.求根公式法:對于關(guān)于x的一元一次方程ax+b=0(a≠0),其求根公式為:x=-b/a。
【本文地址:http://aiweibaby.com/zuowen/2287202.html】