最新高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)精選

格式:DOC 上傳日期:2023-05-13 19:41:22
最新高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)精選
時(shí)間:2023-05-13 19:41:22     小編:文友

總結(jié)是對過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評價(jià)的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,是時(shí)候?qū)懸环菘偨Y(jié)了。什么樣的總結(jié)才是有效的呢?下面是小編帶來的優(yōu)秀總結(jié)范文,希望大家能夠喜歡!

高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)篇一

【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無法比較大小,它們的模可比較大小。

【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合。

【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來幫助理解。

【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求。

【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

【命題規(guī)律】命題多以解答題為主,屬中檔題。

【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的`坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.

【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)篇二

一般地,設(shè)一個(gè)總體含有n個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤n),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。

(1)用簡單隨機(jī)抽樣從含有n個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過程中各個(gè)個(gè)體被抽到的概率為

(2)簡單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

(3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

(4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

(1)抽簽法:先將總體中的所有個(gè)體(共有n個(gè))編號(號碼可從1到n),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法.(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率:

相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):系統(tǒng)抽樣

當(dāng)整體中個(gè)體數(shù)較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規(guī)則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統(tǒng)抽樣。

(1)采用隨機(jī)方式將總體中的個(gè)體編號;

(2)將整個(gè)編號進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即

=k不是整數(shù)時(shí),可采用隨機(jī)方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數(shù)n′滿足是整數(shù);

(3)在第一段中采用簡單隨機(jī)抽樣方法確定第一個(gè)被抽得的個(gè)體編號l;

(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號,從而得到整個(gè)樣本。

相關(guān)高中數(shù)學(xué)知識(shí)點(diǎn):分層抽樣

當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。

利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。

在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱這樣的抽樣為放回抽樣.

隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣

(1)分層抽樣適用于差異明顯的幾部分組成的情況;

(2)在每一層進(jìn)行抽樣時(shí),在采用簡單隨機(jī)抽樣或系統(tǒng)抽樣;

(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;

(4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。

【本文地址:http://aiweibaby.com/zuowen/2898568.html】

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔