心得體會(huì)可以讓我們更加全面和深入地認(rèn)識(shí)自己的成長和發(fā)展過程。在寫作中,可以采用對(duì)比分析、借鑒他人觀點(diǎn)、提出改進(jìn)或解決方案等方法,豐富論述內(nèi)容。通過閱讀這些心得體會(huì)范文,我們可以獲取到一些寫作的技巧和方法。
幾何原本心得體會(huì)篇一
《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,大約成書于公元前3左右,是一部劃時(shí)代的著作,是最早用公理法建立起演繹數(shù)學(xué)體系的典范。它從少數(shù)幾個(gè)原始假定出發(fā),通過嚴(yán)密的邏輯推理,得到一系列的命題,從而保證了結(jié)論的準(zhǔn)確可靠?!稁缀卧尽返脑?3卷,共包含有23個(gè)定義、5個(gè)公設(shè)、5個(gè)公理、286個(gè)命題。是當(dāng)時(shí)整個(gè)希臘數(shù)學(xué)成果、方法、思想和精神的結(jié)晶,其內(nèi)容和形式對(duì)幾何學(xué)本身和數(shù)學(xué)邏輯的發(fā)展有著巨大的影響。自它問世之日起,在長達(dá)二千多年的時(shí)間里一直盛行不衰。它歷經(jīng)多次翻譯和修訂,自1482年第一個(gè)印刷本出版后,至今已有一千多種不同的版本。除了《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識(shí)方面的影響,卻是《圣經(jīng)》所無法比擬的。
《幾何原本》的希臘原始抄本已經(jīng)流失了,它的所有現(xiàn)代版本都是以希臘評(píng)注家泰奧恩(theon,約比歐幾里得晚七百年)編寫的修訂本為依據(jù)的。
《幾何原本》的泰奧恩修訂本分13卷,總共有465個(gè)命題,其內(nèi)容是闡述平面幾何、立體幾何及算術(shù)理論的系統(tǒng)化知識(shí)。第一卷首先給出了一些必要的基本定義、解釋、公設(shè)和公理,還包括一些關(guān)于全等形、平行線和直線形的熟知的定理。該卷的最后兩個(gè)命題是畢達(dá)哥拉斯定理及其逆定理。這里我們想到了關(guān)于英國哲學(xué)家t.霍布斯的一個(gè)小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達(dá)哥拉斯定理,感到十分驚訝,他說:“上帝啊!這是不可能的?!彼珊笙蚯白屑?xì)閱讀第一章的每個(gè)命題的證明,直到公理和公設(shè),他終于完全信服了。第二卷篇幅不大,主要討論畢達(dá)哥拉斯學(xué)派的幾何代數(shù)學(xué)。
第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現(xiàn)在的中學(xué)數(shù)學(xué)課本中找到。第四卷則討論了給定圓的某些內(nèi)接和外切正多邊形的尺規(guī)作圖問題。第五卷對(duì)歐多克斯的比例理論作了精彩的解釋,被認(rèn)為是最重要的數(shù)學(xué)杰作之一。據(jù)說,捷克斯洛伐克的一位并不出名的數(shù)學(xué)家和牧師波爾查諾(bolzano,1781-1848),在布拉格度假時(shí),恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內(nèi)容。他說,這種高明的方法使他興奮無比,以致于從病痛中完全解脫出來。此后,每當(dāng)他朋友生病時(shí),他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數(shù)論,給出了求兩個(gè)或多個(gè)整數(shù)的最大公因子的“歐幾里得算法”,討論了比例、幾何級(jí)數(shù),還給出了許多關(guān)于數(shù)論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最后三卷,即第十一、十二和十三卷,論述立體幾何。目前中學(xué)幾何課本中的內(nèi)容,絕大多數(shù)都可以在《幾何原本》中找到。
《幾何原本》按照公理化結(jié)構(gòu),運(yùn)用了亞里士多德的邏輯方法,建立了第一個(gè)完整的關(guān)于幾何學(xué)的演繹知識(shí)體系。所謂公理化結(jié)構(gòu)就是:選取少量的原始概念和不需證明的命題,作為定義、公設(shè)和公理,使它們成為整個(gè)體系的出發(fā)點(diǎn)和邏輯依據(jù),然后運(yùn)用邏輯推理證明其他命題?!稁缀卧尽烦蔀榱藘汕Ф嗄陙磉\(yùn)用公理化方法的一個(gè)絕好典范。
誠然,正如一些現(xiàn)代數(shù)學(xué)家所指出的那樣,《幾何原本》存在著一些結(jié)構(gòu)上的缺陷,但這絲毫無損于這部著作的崇高價(jià)值。它的影響之深遠(yuǎn).使得“歐幾里得”與“幾何學(xué)”幾乎成了同義語。它集中體現(xiàn)了希臘數(shù)學(xué)所奠定的數(shù)學(xué)思想、數(shù)學(xué)精神,是人類文化遺產(chǎn)中的一塊瑰寶。
幾何原本心得體會(huì)篇二
《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,集整個(gè)古希臘數(shù)學(xué)的成果和精神于一身。既是數(shù)學(xué)巨著,也是哲學(xué)巨著,并且第一次完成了人類對(duì)空間的認(rèn)識(shí)。該書自問世之日起,在長達(dá)兩千多年的時(shí)間里,歷經(jīng)多次翻譯和修訂,自1482年第一個(gè)印刷本出版,至今已有一千多種不同版本。
除《圣經(jīng)》以外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠和《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學(xué)家徐光啟于16合作完成的,但他們只譯出了前六卷。證實(shí)這個(gè)殘本斷定了中國現(xiàn)代數(shù)學(xué)的基本術(shù)語,諸如三角形、角、直角等。日本、印度等東方國家皆使用中國譯法,沿用至今。近百年來,雖然大陸的中學(xué)課本必提及這一偉大著作,但對(duì)中國讀者來說,卻無緣一睹它的全貌,納入家庭藏書更是妄想。
徐光啟在譯此作時(shí),對(duì)該書有極高的評(píng)價(jià),他說:“能精此書者,無一事不可精;好學(xué)此書者,無一事不科學(xué)?!爆F(xiàn)代科學(xué)的奠基者愛因斯坦更是認(rèn)為:如果歐幾里得未能激發(fā)起你少年時(shí)代的科學(xué)熱情,那你肯定不會(huì)是一個(gè)天才的科學(xué)家。由此可見,《幾何原本》對(duì)人們理性推演能力的影響,即對(duì)人的科學(xué)思想的影響是何等巨大。
幾何原本心得體會(huì)篇三
幾何原本是一本古代的數(shù)學(xué)著作,被譽(yù)為數(shù)學(xué)之王,對(duì)于幾何學(xué)發(fā)展的推動(dòng)和數(shù)學(xué)教育的重要性不言而喻。而個(gè)人在課堂數(shù)學(xué)老師的指導(dǎo)下,深入閱讀了這本經(jīng)典之作,從中感悟到了許多道理和思考方式,也在這個(gè)過程中得到了些許收獲和體會(huì)。
一、幾何原本對(duì)幾何學(xué)的發(fā)展起到了重要的推動(dòng)作用。數(shù)學(xué)在古代就已經(jīng)有了發(fā)展,從最早的計(jì)算,到出現(xiàn)基本的幾何學(xué)思想,幾何原本就是在這樣的背景下應(yīng)運(yùn)而生。在幾何原本中,作者以歐幾里得為代表提出了公理化證明,在這個(gè)基礎(chǔ)之上推導(dǎo)出了許多定理,使得幾何學(xué)逐漸成為了一個(gè)有機(jī)的體系,并且這種公理化證明方法一直延續(xù)至今,成為了現(xiàn)代數(shù)學(xué)證明的重要方法之一。
二、幾何原本對(duì)數(shù)學(xué)教育的重要性也不言而喻。在我們的學(xué)習(xí)過程中,幾何學(xué)一直是數(shù)學(xué)一個(gè)重要的組成部分。而幾何原本的結(jié)構(gòu)和證明方式跟現(xiàn)代數(shù)學(xué)教育相似,對(duì)于我們的數(shù)學(xué)學(xué)習(xí)的幫助也是非常大的。同時(shí)幾何原本的學(xué)習(xí)也能讓我們具體理解這門知識(shí)的來源和發(fā)展過程,充分挖掘其思想內(nèi)涵,為我們學(xué)習(xí)到更深入的內(nèi)容打下基礎(chǔ)。
三、幾何原本中關(guān)于直線的幾何公理引出了許多深刻的思考。幾何原本中的直線公理,即兩點(diǎn)之間可以唯一地作一條直線,這一公理恰好是我們?cè)谥行W(xué)數(shù)學(xué)學(xué)習(xí)中講到的直線定義,而這一定義在幾何原本的證明過程中是在其他公理的基礎(chǔ)上進(jìn)行的,而它本身并不能自證自明,這就引出了我們對(duì)于公理本身的思考,也讓我們意識(shí)到了“人人皆知卻不能說明”的哲學(xué)問題。
四、幾何原本中所涉及的問題和方法對(duì)我們的思維方式也起到了一定的影響。在我們學(xué)習(xí)幾何學(xué)的過程中,往往需要進(jìn)行圖形變形、轉(zhuǎn)化等操作,這就需要我們具備一定的想象力和幾何感。而在幾何原本中,作者通過證明定理的過程,展示了自己對(duì)于各種圖形的構(gòu)造和運(yùn)用,同時(shí)通過解決問題的方法,表現(xiàn)了自己的表達(dá)能力和推理技巧。這些方法和思維方式的學(xué)習(xí),也為我們拓寬了思維和學(xué)習(xí)的視野。
五、通過幾何原本的學(xué)習(xí),我們也意識(shí)到了數(shù)學(xué)和現(xiàn)實(shí)之間的聯(lián)系。幾何原本中的許多概念和證明,往往直接涉及到我們?nèi)粘I钪械膯栴},如平行線、測角等問題,同時(shí)通過這些問題的解決和證明,我們也可以對(duì)于這些現(xiàn)象有更深入的認(rèn)識(shí)和了解。這樣的聯(lián)系和理解,也讓我們?cè)趯W(xué)習(xí)過程中更加深刻地理解數(shù)學(xué)在現(xiàn)實(shí)中的應(yīng)用價(jià)值。
綜上所述,幾何原本是數(shù)學(xué)中學(xué)術(shù)通古今,精義不變的經(jīng)典之作。通過對(duì)幾何原本的認(rèn)識(shí)和學(xué)習(xí),我們能夠?qū)τ趲缀螌W(xué)的發(fā)展和演化有更深入的了解和認(rèn)識(shí),同時(shí)也激發(fā)了我們對(duì)于數(shù)學(xué)學(xué)科的興趣和熱愛。
幾何原本心得體會(huì)篇四
第一段:引入幾何原本的重要性和學(xué)習(xí)幾何的目的(200字)。
幾何學(xué)作為數(shù)學(xué)的一個(gè)重要分支,探索了空間、形狀和大小等方面的數(shù)學(xué)性質(zhì)。它不僅在幾何學(xué)本身中扮演著重要角色,還在應(yīng)用數(shù)學(xué)中發(fā)揮著關(guān)鍵作用。幾何原本則是學(xué)習(xí)幾何的基礎(chǔ),是學(xué)習(xí)幾何的起點(diǎn)。通過學(xué)習(xí)幾何原本,我們可以對(duì)幾何學(xué)的基本知識(shí)有更深入的理解,并能夠應(yīng)用幾何的思維方法解決實(shí)際問題。本文將分享我在學(xué)習(xí)幾何原本過程中的體會(huì)和收獲。
第二段:幾何原本對(duì)培養(yǎng)邏輯思維的重要作用(250字)。
幾何原本對(duì)于培養(yǎng)邏輯思維能力至關(guān)重要。在解決幾何問題時(shí),我們需要遵循一定的邏輯關(guān)系和推理規(guī)則,通過觀察和推導(dǎo)來得出結(jié)論。通過多次練習(xí),我逐漸掌握了運(yùn)用邏輯思維解決幾何問題的方法。同時(shí),幾何原本還能培養(yǎng)我們的空間想象能力和創(chuàng)造力。在進(jìn)行幾何原本推導(dǎo)的過程中,我們需要通過圖像和符號(hào)來描述和表示問題,這鍛煉了我們的空間思維能力和創(chuàng)造力,提升了我們的整體思維水平。
第三段:幾何原本對(duì)實(shí)際生活的應(yīng)用(250字)。
幾何原本雖然在形式上似乎只是純粹的學(xué)科,但它的應(yīng)用卻遍及我們的日常生活。幾何原本能夠幫助我們解決很多實(shí)際問題,如計(jì)算面積、測量距離和角度以及設(shè)計(jì)建筑等等。通過學(xué)習(xí)幾何原本,我了解到幾何學(xué)在建筑設(shè)計(jì)、城市規(guī)劃和工程建設(shè)中的重要性。幾何原本提供了多種計(jì)算方法和評(píng)估標(biāo)準(zhǔn),幫助我們更加科學(xué)地進(jìn)行各類工程設(shè)計(jì)和規(guī)劃。因此,幾何原本對(duì)我們的工作和生活都具有十分實(shí)際的意義。
第四段:面對(duì)幾何原本的挑戰(zhàn)及克服方法(250字)。
學(xué)習(xí)幾何原本雖然重要,但也存在一定的難度。幾何原本中的定理和證明往往較為抽象和復(fù)雜,需要我們具備一定的數(shù)學(xué)基礎(chǔ)和邏輯思維能力。為了克服這些困難,我采取了一些有效的學(xué)習(xí)方法。首先,我嘗試了多種教材和參考書,找到適合自己的學(xué)習(xí)材料。其次,我注重理論的學(xué)習(xí)和實(shí)踐的結(jié)合,通過解題和舉一反三的方法幫助自己更好地理解幾何原本的知識(shí)。此外,我還積極參與討論和互動(dòng),在和同學(xué)一起學(xué)習(xí)中相互促進(jìn),取得進(jìn)步。
第五段:幾何原本對(duì)我的成長和啟示(250字)。
綜上所述,學(xué)習(xí)幾何原本不僅增加了我的數(shù)學(xué)知識(shí),還培養(yǎng)了我的邏輯思維能力和空間想象能力。通過幾何原本的學(xué)習(xí),我學(xué)會(huì)了觀察和思考,從不同的角度思考問題,找到解決問題的方法。這些能力不僅在解決幾何問題時(shí)發(fā)揮了作用,也在我日常生活和學(xué)習(xí)的方方面面中起到了積極的促進(jìn)作用。幾何原本的學(xué)習(xí)讓我體會(huì)到數(shù)學(xué)的美妙和思維的樂趣,激發(fā)了我追求知識(shí)和探索世界的熱忱。
總結(jié):
通過幾何原本的學(xué)習(xí),我深刻體會(huì)到幾何學(xué)的重要性和應(yīng)用價(jià)值。幾何原本不僅培養(yǎng)了我的邏輯思維能力和空間想象能力,還在實(shí)際生活中發(fā)揮了積極作用。我相信幾何原本的學(xué)習(xí)對(duì)我未來的職業(yè)發(fā)展和學(xué)習(xí)進(jìn)一步深入幾何學(xué)都有重要意義。所以,我會(huì)繼續(xù)努力學(xué)習(xí)幾何原本,并繼續(xù)探索更深入的幾何學(xué)知識(shí)。
幾何原本心得體會(huì)篇五
幾何,作為數(shù)學(xué)的一個(gè)重要分支,主要研究空間和圖形的形狀、大小、位置以及它們之間的關(guān)系。學(xué)習(xí)幾何不僅能夠培養(yǎng)孩子的空間想象力和邏輯思維能力,還能夠幫助他們更好地理解和應(yīng)用數(shù)學(xué)知識(shí)。以下是我在學(xué)習(xí)幾何過程中的一些心得體會(huì)。
首先,幾何讓我體驗(yàn)到了數(shù)學(xué)的美妙之處。幾何中的形狀和關(guān)系,以及推理和證明過程都充滿了藝術(shù)性和美感。例如,歐幾里得幾何中的尺規(guī)作圖,簡潔而又優(yōu)美,宛如一幅畫作,令人賞心悅目。通過學(xué)習(xí)幾何,我不僅能夠欣賞到這種美感,還能夠感受到數(shù)學(xué)中那種嚴(yán)密和精確的思維方式。
其次,幾何學(xué)習(xí)讓我培養(yǎng)了空間想象力。幾何中的圖形是由線段、角、面等幾何元素構(gòu)成的,在解題過程中,同學(xué)們需要準(zhǔn)確地理解和操作這些幾何概念。通過大量的練習(xí)和思考,我的空間想象力得到了極大的鍛煉和提升。我學(xué)會(huì)了將二維的圖形在腦海中轉(zhuǎn)化為三維的空間形象,能夠準(zhǔn)確地描繪出一個(gè)物體在空間中的位置和形狀,這為我理解和應(yīng)用幾何知識(shí)提供了很大的幫助。
再次,幾何學(xué)習(xí)促進(jìn)了我的邏輯思維能力。幾何中的推理和證明是我們學(xué)習(xí)的重點(diǎn),需要我們善于發(fā)現(xiàn)、總結(jié)和運(yùn)用幾何性質(zhì)和定理,進(jìn)行推理和證明。這對(duì)我們的邏輯思維能力提出了很高的要求。通過學(xué)習(xí)幾何,我逐漸培養(yǎng)了邏輯思維和推理的能力,能夠善于發(fā)現(xiàn)問題中的規(guī)律,運(yùn)用幾何定理進(jìn)行推導(dǎo)和證明。這對(duì)我不僅在數(shù)學(xué)上有很大的幫助,而且對(duì)其他科學(xué)領(lǐng)域的學(xué)習(xí)也起到了積極的促進(jìn)作用。
此外,幾何學(xué)習(xí)不僅加深了我對(duì)數(shù)學(xué)知識(shí)的理解,還幫助我提高了解決問題的能力。幾何中的問題往往是生活中實(shí)際問題的抽象和模擬,通過學(xué)習(xí)幾何問題,我能夠?qū)⒊橄蟮臄?shù)學(xué)知識(shí)應(yīng)用到具體的實(shí)際問題中,幫助我更好地理解并解決實(shí)際生活中的問題。幾何不僅鍛煉了我的計(jì)算和分析能力,同時(shí)也提高了我對(duì)抽象思維的理解和應(yīng)用能力,使我能夠更好地應(yīng)對(duì)復(fù)雜的問題和挑戰(zhàn)。
最后,幾何學(xué)習(xí)讓我體會(huì)到了探究的樂趣。幾何學(xué)習(xí)強(qiáng)調(diào)的是探究和發(fā)現(xiàn),通過自己的思考和實(shí)踐,去探索和發(fā)現(xiàn)幾何原理和定理。在這個(gè)過程中,我們不僅能夠理解幾何定理的內(nèi)涵和外延,也能夠感受到思考和探索的快樂。幾何學(xué)習(xí)培養(yǎng)了我獨(dú)立思考和自主學(xué)習(xí)的能力,使我樂于探求數(shù)學(xué)的奧秘,不斷追求數(shù)學(xué)的精深。
總之,學(xué)幾何不僅能夠培養(yǎng)我們的空間想象力和邏輯思維能力,還能夠幫助我們更好地理解和應(yīng)用數(shù)學(xué)知識(shí)。通過幾何學(xué)習(xí),我不僅能夠體驗(yàn)到數(shù)學(xué)的美妙之處,還能夠培養(yǎng)自己的思考和解決問題的能力,更加深刻地體會(huì)到了學(xué)習(xí)的樂趣。希望將來可以進(jìn)一步探索和發(fā)展幾何學(xué)習(xí),不斷提升自己的數(shù)學(xué)素養(yǎng)。
幾何原本心得體會(huì)篇六
幾何原本是一本古典數(shù)學(xué)著作,作者歐幾里得創(chuàng)立了歐幾里得幾何學(xué)派,其所包含的幾何知識(shí)至今仍廣泛應(yīng)用于各個(gè)領(lǐng)域。我在學(xué)習(xí)這本經(jīng)典著作的過程中,深受其啟發(fā),有一些收獲和體會(huì),這篇文章將會(huì)介紹。
在介紹自己的經(jīng)驗(yàn)和感悟之前,我們首先需要對(duì)幾何原本有一個(gè)簡單的了解。幾何原本最早可以追溯到公元前300年左右,是古希臘數(shù)學(xué)家歐幾里得所著的著作,涵蓋了許多幾何知識(shí),包括各種形狀的理論、等比例、分割圖形、平面和立體幾何的證明等等。幾何原本的創(chuàng)作對(duì)數(shù)學(xué)發(fā)展產(chǎn)生了深遠(yuǎn)的影響,并且在幾百年的時(shí)間里被視為最重要、最權(quán)威的幾何書籍。
在我學(xué)習(xí)幾何原本的過程中,我感受到了許多不同尋常的體驗(yàn)。首先,這本書盡管是古老的,但是它的思想依然是新穎而精密。其次,幾何原本展現(xiàn)出的許多證明和定理都是非常的直觀和有用的。雖然其中的某些證明或許已經(jīng)有了更加簡單的解法,但是它始終是一個(gè)基本的數(shù)學(xué)工具,正是因?yàn)榇祟愖C明和定理是可以廣泛應(yīng)用,而且是理解許多更高級(jí)概念的基礎(chǔ)。
在學(xué)習(xí)幾何原本的過程中,我發(fā)現(xiàn)它對(duì)我的思維有著深遠(yuǎn)的影響。幾何原本讓我更懂得了發(fā)現(xiàn)和證明的過程,因?yàn)樗鼘⒃S多幾何問題化繁為簡。特別是在證明中,幾何原本鼓勵(lì)我們通過不同的方法解決問題,此過程可以幫助我們更好地理解數(shù)學(xué)和思考問題的方式。此外,學(xué)習(xí)幾何原本還培養(yǎng)了我的想象力和創(chuàng)造力,對(duì)我的思維能力和推理能力也有了很大的提高。
不僅僅是在歷史上,幾何原本在現(xiàn)代數(shù)學(xué)中的地位也是非常重要的。它作為幾何學(xué)的基礎(chǔ)理論,已經(jīng)為一系列重要的創(chuàng)新和發(fā)現(xiàn)提供了基礎(chǔ)。例如,在拓?fù)鋵W(xué)和流形理論中,幾何知識(shí)是極其必要和重要的。即使在計(jì)算機(jī)科學(xué)和物理學(xué)等其他領(lǐng)域,許多幾何學(xué)定理和方法仍然有著應(yīng)用價(jià)值,幾何原本的學(xué)習(xí)是學(xué)習(xí)現(xiàn)代數(shù)學(xué)的必由之路。
第五段:結(jié)論。
總結(jié)一下,學(xué)習(xí)幾何原本能夠幫助我們發(fā)展出的思維能力、創(chuàng)新能力和廣泛的應(yīng)用性,讓我們?cè)诮鉀Q許多問題時(shí)更加得心應(yīng)手。它在古代開創(chuàng)了歐幾里得幾何學(xué)派,而現(xiàn)在,它在現(xiàn)代數(shù)學(xué)的發(fā)展中也繼續(xù)扮演著重要的角色。通過本篇文章,我希望能夠讓更多的人意識(shí)到幾何原本的重要性,盡管可能這本書并不是那么容易閱讀,但它背后的思想和知識(shí)是值得我們學(xué)習(xí)和探索的。
幾何原本心得體會(huì)篇七
幾何學(xué)是一門集合數(shù)學(xué)、圖形學(xué)、物理學(xué)和邏輯學(xué)于一體的學(xué)科,研究空間和形狀的性質(zhì)。在我的學(xué)習(xí)過程中,我體會(huì)到了幾何學(xué)的重要性和魅力,并且逐漸發(fā)現(xiàn)了它與我們?nèi)粘I畹穆?lián)系。幾何原本課程不僅豐富了我的知識(shí)儲(chǔ)備,還培養(yǎng)了我的邏輯思維能力和創(chuàng)造力。
首先,幾何學(xué)讓我意識(shí)到數(shù)學(xué)的美妙之處。曾經(jīng),我對(duì)數(shù)學(xué)只是一堆公式和計(jì)算,但是通過學(xué)習(xí)幾何學(xué),我發(fā)現(xiàn)數(shù)學(xué)背后存在著無限的美麗和精巧。幾何學(xué)通過圖形的形狀和結(jié)構(gòu)來揭示數(shù)學(xué)的規(guī)律和性質(zhì),讓我重新認(rèn)識(shí)到數(shù)學(xué)的深度和廣度。我開始意識(shí)到,數(shù)學(xué)不僅僅是為了解決實(shí)際問題,更是一種抽象思維的體現(xiàn),是一門關(guān)于邏輯和推理的思維工具。
其次,幾何學(xué)的學(xué)習(xí)給予了我良好的空間想象力和幾何直覺。從一開始,幾何學(xué)就要求我們以圖形和空間為切入點(diǎn),通過觀察圖形的形狀、方向和位移來推斷和證明結(jié)論。這讓我培養(yǎng)了空間想象力和幾何直覺的能力,能夠更好地預(yù)測和理解空間問題。在日常生活中,無論是布置房間,還是規(guī)劃路線,幾何學(xué)都為我提供了一個(gè)解決問題的框架,使我能夠更加高效和準(zhǔn)確地完成任務(wù)。
此外,幾何學(xué)的學(xué)習(xí)也讓我更加懂得了證明的重要性和方法。在幾何學(xué)中,證明是至關(guān)重要的一環(huán)。通過推導(dǎo)和邏輯推理,我們可以從已知事實(shí)出發(fā),得出未知事實(shí)。這鍛煉了我邏輯思維的能力,教會(huì)了我如何用證明說服他人,如何從多個(gè)角度分析和解決問題。這種證明的思維方式不僅適用于數(shù)學(xué)領(lǐng)域,還對(duì)其他領(lǐng)域的問題分析和解決有著普適性的指導(dǎo)作用。
最后,幾何學(xué)的學(xué)習(xí)激發(fā)了我的創(chuàng)造力和想象力。幾何學(xué)不僅僅是為了理解和應(yīng)用已有的知識(shí),更是為了創(chuàng)造新的知識(shí)和圖形。通過解決幾何難題和設(shè)計(jì)幾何圖形,我開始嘗試用不同的思維方式探索和解決問題。這種創(chuàng)造性的思維過程讓我思維更加開闊,想象力更加豐富。我開始認(rèn)識(shí)到,數(shù)學(xué)并不是死的,它是一個(gè)等待我們?nèi)ヌ剿骱桶l(fā)現(xiàn)的無限宇宙。
綜上所述,幾何學(xué)學(xué)習(xí)讓我認(rèn)識(shí)到數(shù)學(xué)的美妙之處、培養(yǎng)了空間想象力和幾何直覺、加強(qiáng)了證明的能力和方法、以及激發(fā)了我的創(chuàng)造力和想象力。幾何學(xué)是我認(rèn)識(shí)數(shù)學(xué)和思維方式的媒介,它讓我獲得了遠(yuǎn)超于知識(shí)本身的寶貴財(cái)富。無論將來我走向何方,幾何學(xué)的學(xué)習(xí)足夠讓我受益終生。
幾何原本心得體會(huì)篇八
幾何學(xué)科作為數(shù)學(xué)中的重要分支,是從研究空間和形狀的角度出發(fā),推演出了一系列嚴(yán)密的理論和定理。幾何學(xué)不僅僅是幫助我們理解和描述幾何圖形的工具,更為重要的是,它為我們理解自然界的很多現(xiàn)象提供了有效的途徑,例如:天體運(yùn)動(dòng)、光學(xué)現(xiàn)象等。在現(xiàn)代科學(xué)和工程中,幾何學(xué)又被廣泛應(yīng)用于計(jì)算機(jī)圖形學(xué)、計(jì)算機(jī)輔助設(shè)計(jì)、計(jì)算機(jī)輔助制造等領(lǐng)域。因此,在學(xué)習(xí)幾何學(xué)時(shí)需要認(rèn)真對(duì)待,主動(dòng)提高自己的學(xué)習(xí)效率和能力。
第二段:幾何學(xué)習(xí)過程中經(jīng)常遇到的問題和解決方法。
在學(xué)習(xí)幾何學(xué)的過程中,很多人會(huì)遇到一些常見的問題。例如:不清楚基本概念的定義、不理解定理證明的方法、不知道如何解題等。這些問題不僅會(huì)影響到我們的成績,而且會(huì)對(duì)我們以后的學(xué)習(xí)產(chǎn)生負(fù)面影響。為了解決這些問題,我們需要在課上認(rèn)真聽講、積極思考,課下多加練習(xí)、整理筆記??梢酝ㄟ^自學(xué)、請(qǐng)教老師、和同學(xué)討論等方式來解決這些問題,相信只要你認(rèn)真去解決,總會(huì)有辦法找到。
第三段:幾何學(xué)習(xí)中的體驗(yàn)和感悟。
在我個(gè)人的學(xué)習(xí)經(jīng)驗(yàn)中,幾何學(xué)是相對(duì)難度較大的數(shù)學(xué)學(xué)科之一。在初中時(shí),我曾經(jīng)為了解幾何學(xué)的題目而愁眉不展,感到十分的迷茫和無助。但是在不斷的學(xué)習(xí)和努力下,我意識(shí)到幾何學(xué)習(xí)中最重要的是掌握基礎(chǔ)知識(shí)和理解原理,而不是單純的解決題目。只有掌握了正確的思考方式和方法,才能更好的解決問題,并取得更好的學(xué)習(xí)成效。在此,我深刻感受到在學(xué)習(xí)幾何學(xué)這門學(xué)科時(shí),需要只爭朝夕,不斷努力,才能取得更好的成果。
第四段:幾何學(xué)習(xí)中需要注意的問題和建議。
在學(xué)習(xí)幾何學(xué)時(shí),需要注意以下幾點(diǎn):
首先,理清基礎(chǔ)概念,掌握常用記號(hào)和符號(hào),明確各種定理和公式的表達(dá)和意義。
其次,進(jìn)行分類整理將所學(xué)內(nèi)容加以總結(jié)歸納,形成系統(tǒng)的知識(shí)結(jié)構(gòu)。
最后,大量練習(xí)和實(shí)踐,積累經(jīng)驗(yàn)和技巧。每當(dāng)我們?nèi)ソ鉀Q一個(gè)新問題時(shí),都需要有足夠的耐心和恒心去探索和實(shí)踐,不斷錘煉自己的技能和思維能力。
第五段:總結(jié)與展望。
幾何學(xué)是數(shù)學(xué)學(xué)科中重要的一門,學(xué)習(xí)幾何學(xué)不僅可以幫助我們了解和掌握空間形狀和變化,更能開拓我們的思維方式和理念,提高我們的綜合素質(zhì)和學(xué)習(xí)能力。在今后的學(xué)習(xí)和工作中,幾何學(xué)所教授的基礎(chǔ)理論和應(yīng)用技巧必將會(huì)對(duì)我們有很大的幫助。因此,我們需要不斷地加強(qiáng)自己的幾何學(xué)習(xí)和實(shí)踐,并利用幾何學(xué)的知識(shí)和技巧去解決現(xiàn)實(shí)生活中的各種問題。
幾何原本心得體會(huì)篇九
學(xué)幾何是數(shù)學(xué)中的一個(gè)重要分支,對(duì)于培養(yǎng)學(xué)生的邏輯思維和空間想象力有著重要的作用。在學(xué)習(xí)幾何的過程中,我深刻感受到幾何的魅力和價(jià)值。下面我將分享一些在學(xué)習(xí)幾何過程中的心得體會(huì)。
第二段:幾何的基本概念與推理。
幾何是一門讓我感到困惑卻又樂在其中的學(xué)科。在初次接觸幾何的時(shí)候,我發(fā)現(xiàn)幾何有著許多復(fù)雜的定理和推理,如勾股定理、平行線與角的性質(zhì)等等。但是,通過不斷重復(fù)和實(shí)踐,我逐漸掌握了幾何的基本概念與推理方法。我發(fā)現(xiàn)幾何中的定理都是有嚴(yán)謹(jǐn)?shù)倪壿嬐评磉^程,只要理解了問題的條件和結(jié)論,就能夠通過推理來得到答案。這種嚴(yán)謹(jǐn)?shù)乃季S方式讓我深感幾何的學(xué)習(xí)不僅僅是解題,更是一種思維和邏輯的訓(xùn)練。
第三段:幾何的圖形與空間想象力。
幾何的另一個(gè)特點(diǎn)就是涉及到圖形和空間的想象力。通過畫圖,幾何能夠?qū)⒊橄蟮膯栴}具象化,讓我們更好地理解幾何的本質(zhì)。我發(fā)現(xiàn)在畫圖的過程中,需要具備良好的空間想象力和準(zhǔn)確的手繪技巧。通過不斷練習(xí),我的空間想象力得到了提高,能夠更加準(zhǔn)確地描述和構(gòu)建各種幾何圖形。除此之外,作圖還能夠幫助我直觀地理解幾何定理的證明過程。有時(shí)候,一個(gè)簡單的圖形能夠帶來意想不到的突破,讓我對(duì)幾何問題有了更深刻的認(rèn)識(shí)。
第四段:幾何在生活中的應(yīng)用。
幾何不僅僅是一門學(xué)科,它還有著廣泛的應(yīng)用。從建筑設(shè)計(jì)到機(jī)器制造,幾何都扮演著重要的角色。我記得在學(xué)習(xí)幾何的過程中,老師經(jīng)常給我們一些形狀的問題,這些問題看似簡單,卻能夠進(jìn)一步培養(yǎng)我們的幾何思維。我通過這類問題,認(rèn)識(shí)到了幾何在生活中的實(shí)際應(yīng)用價(jià)值。例如,通過幾何知識(shí),我們能夠更好地理解螺旋線的形狀與性質(zhì),從而在機(jī)械制造中更好地設(shè)計(jì)和運(yùn)用螺旋線。幾何的應(yīng)用不僅僅局限于學(xué)科內(nèi)部,它滲透到了我們的日常生活中,不斷地給我們帶來便利和啟發(fā)。
第五段:總結(jié)。
學(xué)幾何是一項(xiàng)需要耐心和堅(jiān)持的過程,但是它也是一項(xiàng)讓人愉悅和充實(shí)的學(xué)習(xí)經(jīng)歷。通過學(xué)習(xí)幾何,我體會(huì)到了幾何的邏輯推理和空間想象力的重要性。幾何的應(yīng)用也讓我深感幾何學(xué)習(xí)的實(shí)際價(jià)值。我相信通過不斷地學(xué)習(xí)和實(shí)踐,我能夠繼續(xù)提高自己的幾何水平,在更多的領(lǐng)域中發(fā)揮幾何的作用,成為一個(gè)具有幾何思維能力的人。
幾何原本心得體會(huì)篇十
只要上過初中的人都學(xué)過幾何,可是不一定知道把幾何介紹到中國來的是明朝的大科學(xué)家徐光啟和來自意大利的傳教士利瑪竇,更不一定知道是徐光啟把這門“測地學(xué)”創(chuàng)造性地意譯為“幾何”的。從1667年《幾何原本》前六卷譯完至今已有四百年,11月9日上海等地舉行了形式多樣的紀(jì)念活動(dòng)。來自意大利、美國、加拿大、法國、日本、比利時(shí)、芬蘭、荷蘭、中國等9個(gè)國家及兩岸四地的60余位中外學(xué)者聚會(huì)徐光啟的安息之地——上海徐匯區(qū),紀(jì)念徐光啟暨《幾何原本》翻譯出版400周年。
“一物不知,儒者之恥?!?/p>
徐光啟家世平凡,父親是一個(gè)不成功的商人,破產(chǎn)后在上海務(wù)農(nóng),家境不佳。徐光啟19歲時(shí)中秀才,過了16年才中舉人,此后又7年才中進(jìn)士。在參加翰林院選拔時(shí)列第四名,即被選為翰林院庶吉士,相當(dāng)于是明帝國皇家學(xué)院的博士研究生。他殿試排名三甲五十二名,名次靠后,照理沒有資格申請(qǐng)入翰林院。他的同科進(jìn)士、也是他年滿花甲的老師黃體仁主動(dòng)讓賢,把考翰林院的機(jī)會(huì)讓給了他。
《明史·徐光啟傳》中開篇用33個(gè)字講完他的科舉經(jīng)歷,緊接著就說他“從西洋人利瑪竇學(xué)天文、歷算、火器,盡其術(shù)。遂遍習(xí)兵機(jī)、屯田、鹽策、水利諸書”,可見如果沒有跟隨利瑪竇學(xué)習(xí)西方科學(xué),徐光啟只是有明一代數(shù)以千萬計(jì)的官僚中不出奇的一員。但是因?yàn)樵?600年遇上了利瑪竇,且在翰林院學(xué)習(xí)期間有機(jī)會(huì)從學(xué)于利瑪竇,他得從一干庸眾中脫穎而出。
利瑪竇(matteoricci)1552年生于意大利馬切拉塔,1571年在羅馬成為耶穌會(huì)的見習(xí)修士,在教會(huì)里接受了神學(xué)、古典文學(xué)和自然科學(xué)的廣泛訓(xùn)練,又在印度的果阿學(xué)會(huì)了繪制地圖和制造各類科學(xué)儀器,尤其是天文儀器。
利瑪竇于1577年5月離開羅馬,于1583年2月來到中國。8月在廣東肇慶建立“仙花寺”,開始傳教??墒且婚_始很不順利。為此,利瑪竇轉(zhuǎn)變了策略,決定采取曲線傳教的方針,為了接近中國人,利瑪竇不僅說中文,寫漢字,而且生活也力求中國化。正式服裝也改成了寬衣博帶的儒生裝束。
1598年6月利瑪竇去北京見皇帝,未能見到,次年返回南京。在南京期間,利瑪竇早已赫赫有名,尤其是他過目不忘、倒背如流的記憶術(shù)給人留下了深刻的印象,一傳十,十傳百,已神乎其神。加之利瑪竇高明的社交手段,以及他的那些引人入勝的、代表著西方工藝水平的工藝品和科學(xué)儀器,引得高官顯貴和名士文人都樂于和他交往。利瑪竇則借此來達(dá)到自己的目的——推動(dòng)傳教活動(dòng)。
也正是利瑪竇的學(xué)識(shí)和魅力吸引了徐光啟。根據(jù)利瑪竇的日記記載,約在1597年7月到1600年5月之間。徐光啟和利瑪竇曾見過一面,利瑪竇說這是一次短暫的見面。徐光啟主要向利瑪竇討教一些基督教教義,雙方并沒有深談。和利瑪竇分手之后,徐光啟花了兩三年時(shí)間研究基督教義,思考自己的命運(yùn)。1603年,徐光啟再次去找利瑪竇,但利瑪竇這時(shí)已經(jīng)離開南京到北京去了。徐光啟拜見了留在南京的傳教士羅如望,和之長談數(shù)日后,終于受洗成為了基督教徒。
1601年1月,利瑪竇再次晉京面圣,此次獲得成功,利瑪竇帶來的見面禮是自鳴鐘和鋼琴,這兩樣?xùn)|西是要經(jīng)常修理的,于是他被要求留在京城,以便可以經(jīng)常為皇帝修理這兩樣?xùn)|西。正好1604年4月,徐光啟中進(jìn)士后要留在北京。兩人的交往也多起來。在此之前,徐光啟對(duì)中國傳統(tǒng)數(shù)字已有較深入的了解,他跟利瑪竇學(xué)習(xí)了西方科技后,向利瑪竇請(qǐng)求合作翻譯《幾何原本》,以克服傳統(tǒng)數(shù)學(xué)只言“法”而不言“義”的缺陷,認(rèn)為“此書未譯,則他書俱不可得論。”利瑪竇勸他不要沖動(dòng),因?yàn)榉g實(shí)在太難,徐光啟回答說:“一物不知,儒者之恥?!?/p>
幾何原本心得體會(huì)篇十一
徐光啟(公元1562—1633年)字子先,號(hào)玄扈,吳淞(今屬上海)人。他從萬歷末年起,經(jīng)過天啟、崇禎各朝,曾作到文淵閣大學(xué)士的官職(相當(dāng)于宰相)。他精通天文歷法,是明末改歷的主要主持人。他對(duì)農(nóng)學(xué)也頗有研究,曾根據(jù)前人所著各種農(nóng)書,附以自己的見解,編寫了著名的《農(nóng)政全書》,全書有六十余卷,共六十多萬字。明朝末年,滿族的統(tǒng)治階級(jí)從東北關(guān)外屢次發(fā)動(dòng)戰(zhàn)爭,徐光啟曾屢次上書論軍事,并在通州練新兵,主張采用西方火炮。他是一位熱愛祖國的科學(xué)家。
他沒有入京做官之前,曾在上海、廣東、廣西等地教書。在此期間,他曾博覽群書,在廣東還接觸到一些傳教士,對(duì)他們傳入的西方文化開始有所接觸。公元1600年,他在南京和利瑪竇相識(shí),以后兩人又長期同住在北京,經(jīng)常來往。他和利瑪竇兩人共同譯《幾何原本》一書,1607年譯完前六卷。當(dāng)時(shí)徐光啟很想全部譯完,利瑪竇卻不愿這樣做。直到晚清時(shí)代,《幾何原本》后九卷的翻譯工作才由李善蘭(公元1811—1882年)完成的。
《幾何原本》是我國最早第一部自拉丁文譯來的數(shù)學(xué)著作。在翻譯時(shí)絕無對(duì)照的詞表可循,許多譯名都從無到有,當(dāng)時(shí)創(chuàng)造的。毫無疑問,這是需要精細(xì)研究煞費(fèi)苦心的。這個(gè)譯本中的許多譯名都十分恰當(dāng),不但在我國一直沿用至今,并且還影響了日本的、朝鮮各國。如點(diǎn)、線、直線、曲線、平行線、角、直角、銳角、鈍角、三角形、四邊形……這許多名詞都是由這個(gè)譯本首先定下來的。其中只有極少的幾個(gè)經(jīng)后人改定,如“等邊三角形”,徐光啟當(dāng)時(shí)記作“平邊三角形”;“比”,當(dāng)時(shí)譯為“比例”;而“比例”則譯為“有理的比例”等等。
《幾何原本》有嚴(yán)整的邏輯體系,其敘述方式和中國傳統(tǒng)的《九章算術(shù)》完全不同。徐光啟對(duì)《幾何原本》區(qū)別于中國傳統(tǒng)數(shù)學(xué)的這種特點(diǎn),有著比較清楚的認(rèn)識(shí)。他還充分認(rèn)識(shí)到幾何學(xué)的重要意義,他說“竊百年之后,必人人習(xí)之”。
清康熙帝時(shí),編輯數(shù)學(xué)百科全書《數(shù)理精蘊(yùn)》(公元1723年),其中收有《幾何原本》一書,但這是根據(jù)公元十八世紀(jì)法國幾何學(xué)教科書翻譯的,和歐幾里得的《幾何原本》差別很大。
幾何原本心得體會(huì)篇十二
也許這算不上是個(gè)謎。稍具文化修養(yǎng)的人都會(huì)告訴你,歐幾里德《幾何原本》是明末傳入的,它的譯者是徐光啟與利瑪竇。但究竟何時(shí)傳入,在中外科技史界卻一直是一個(gè)懸案。
著名的科技史家李約瑟在《中國科學(xué)技術(shù)史》中指出:“有理由認(rèn)為,歐幾里德幾何學(xué)大約在公元1275年通過阿拉伯人第一次傳到中國,但沒有多少學(xué)者對(duì)它感興趣,即使有過一個(gè)譯本,不久也就失傳了?!边@并非離奇之談,元代一位老穆斯林技術(shù)人員曾為蒙古人服務(wù),一位受過高等教育的敘利亞景教徒愛薩曾是翰林院學(xué)士和大臣。波斯天文學(xué)家札馬魯丁曾為忽必烈設(shè)計(jì)過《萬年歷》。歐幾里德的幾何學(xué)就是通過這方面的交往帶到中國的。14世紀(jì)中期成書的《元秘書監(jiān)志》卷七曾有記載:當(dāng)時(shí)官方天文學(xué)家曾研究某些西方著作,其中包括兀忽烈的的《四季算法段數(shù)》15冊(cè),這部書于1273年收入皇家書庫?!柏:隽业摹笨赡苁恰皻W幾里德”的另一種音譯,“四擘”。
是阿拉伯語“原本”的音譯。著名的數(shù)學(xué)史家嚴(yán)敦杰認(rèn)為傳播者是納西爾·丁·土西,一位波斯著名的天文學(xué)家的。
有的外國學(xué)者認(rèn)為歐幾里德《幾何原本》的任何一種阿拉伯譯本都沒有多于13冊(cè),因?yàn)橐恢钡轿乃噺?fù)興時(shí)才增輯了最后兩冊(cè),因此對(duì)元代時(shí)就有15冊(cè)的歐幾里德的幾何學(xué)之說似難首肯。
有的史家提出原文可能仍是阿拉伯文,而中國人只譯出了書名。也有的認(rèn)為演繹幾何學(xué)知識(shí)在中國傳播得這樣遲緩,以后若干世紀(jì)都看不到這種影響,說明元代顯然不存在有《幾何原本》中譯本的可能性。也有的學(xué)者提出假設(shè):皇家天文臺(tái)搞了一個(gè)譯本,可能由于它與2000年的中國數(shù)學(xué)傳統(tǒng)背道而馳而引不起廣泛的興趣的。
幾何原本心得體會(huì)篇十三
幾何學(xué)是高中數(shù)學(xué)中的重要內(nèi)容,通過學(xué)習(xí)幾何學(xué),我不僅僅掌握了一些基本的定理和公式,還深刻體會(huì)到了幾何學(xué)對(duì)于培養(yǎng)邏輯思維和創(chuàng)造力的重要作用。在這段時(shí)間的學(xué)習(xí)中,我積累了一些關(guān)于幾何的心得和體會(huì),讓我對(duì)這門學(xué)科有了更深刻的認(rèn)識(shí)和理解。
首先,幾何學(xué)不僅僅是一門純粹的理論學(xué)科,更是一門實(shí)踐性較強(qiáng)的學(xué)科。在幾何學(xué)的學(xué)習(xí)過程中,我們經(jīng)常要進(jìn)行實(shí)際問題的建模和求解。例如,在解決平面幾何題目時(shí),我們需要將圖形抽象出來,運(yùn)用幾何定理和公式進(jìn)行分析和計(jì)算。這個(gè)過程就是數(shù)學(xué)知識(shí)與實(shí)際問題相結(jié)合的最好例證。通過實(shí)際問題的解決,我深刻體會(huì)到了幾何學(xué)的實(shí)用性,也為今后的工作和生活積累了經(jīng)驗(yàn)。
其次,幾何學(xué)的學(xué)習(xí)需要具備一定的想象力和創(chuàng)造力。在解決幾何問題時(shí),我們需要根據(jù)題目的描述,通過思考和分析,形成一種立體的想象。只有通過想象,我們才能更好地理解題目,找到解題的思路。我曾經(jīng)遇到過這樣一個(gè)題目:已知一個(gè)直角三角形的斜邊和一個(gè)直角邊的長,求另一個(gè)直角邊的長。在經(jīng)過一番思考后,我想到了使用勾股定理去求解。通過想象,我將這個(gè)問題與一個(gè)根據(jù)勾股定理可以解決的問題聯(lián)系起來,最終得到了正確的答案。幾何學(xué)的學(xué)習(xí)過程培養(yǎng)了我的想象力和創(chuàng)造力,使我更加具備了解決問題的能力。
再次,幾何學(xué)的學(xué)習(xí)常常需要耐心和堅(jiān)持。幾何學(xué)是一個(gè)理論體系龐大的學(xué)科,其中的定理和公式繁多,我們需要反復(fù)閱讀和推敲才能理解。有時(shí)候,我們會(huì)遇到一些難題,需要多方面思考和嘗試才能解決。在這個(gè)過程中,耐心和堅(jiān)持是必不可少的品質(zhì)。曾經(jīng)有一道難題讓我束手無策,但是我沒有放棄,反復(fù)思考,查閱資料,最終找到了解決問題的方法。這種堅(jiān)持和毅力不僅在幾何學(xué)中有用,也在其他學(xué)科和生活中同樣適用。
最后,幾何學(xué)的學(xué)習(xí)幫助我培養(yǎng)了邏輯思維和分析問題的能力。幾何學(xué)是嚴(yán)密性較強(qiáng)的學(xué)科,我們?cè)趯W(xué)習(xí)和運(yùn)用定理和公式的過程中,必須要有清晰的邏輯思維和良好的分析問題的能力。通過幾何學(xué)的學(xué)習(xí),我逐漸養(yǎng)成了一種習(xí)慣,即在解決問題時(shí)要先明確問題的要求,然后分析給定條件和所需計(jì)算的關(guān)系,最后有條不紊地進(jìn)行運(yùn)算。這種思維方式不僅使得我的計(jì)算準(zhǔn)確無誤,也在其他學(xué)科和生活中帶給我很大的幫助。
綜上所述,通過幾何學(xué)的學(xué)習(xí),我不僅僅掌握了一些基本的定理和公式,還在實(shí)踐中體會(huì)到了幾何學(xué)的實(shí)用性,培養(yǎng)了想象力和創(chuàng)造力,鍛煉了耐心和堅(jiān)持的品質(zhì),同時(shí)也提升了我的邏輯思維和分析問題的能力。幾何學(xué)對(duì)于我的成長和發(fā)展有著重要的影響,我相信在今后的學(xué)習(xí)和工作中,這些體會(huì)將繼續(xù)發(fā)揮作用。
幾何原本心得體會(huì)篇十四
幾何學(xué)是數(shù)學(xué)中的一個(gè)重要分支,它研究空間中的形狀、大小和相互關(guān)系。在學(xué)習(xí)幾何學(xué)的過程中,我積累了很多心得體會(huì)。首先,幾何學(xué)要注重觀察和思考,其次,幾何學(xué)注重實(shí)際應(yīng)用,再次,幾何學(xué)的學(xué)習(xí)需要耐心和堅(jiān)持,最后,幾何學(xué)能夠培養(yǎng)思維能力和創(chuàng)造力。通過這篇文章,我將詳細(xì)介紹我的幾何學(xué)心得體會(huì)。
首先,幾何學(xué)需要注重觀察和思考。在幾何學(xué)中,觀察是很重要的,我們需要仔細(xì)觀察圖形的形狀、邊長、角度等特征,并進(jìn)行思考。只有通過觀察和思考,我們才能理解幾何學(xué)的基本概念和定理,并能靈活運(yùn)用到解題中。在我的學(xué)習(xí)過程中,我發(fā)現(xiàn)通過多次觀察和思考同一道題目,會(huì)有不同的領(lǐng)悟和解題思路。因此,觀察和思考對(duì)于幾何學(xué)的學(xué)習(xí)是至關(guān)重要的。
其次,幾何學(xué)注重實(shí)際應(yīng)用。幾何學(xué)不僅僅是一門理論學(xué)科,更是能夠應(yīng)用到實(shí)際生活和問題中的學(xué)科。例如,在日常生活中,我們需要測量房間的面積、計(jì)算材料的用量等等,這些都需要運(yùn)用到幾何學(xué)的知識(shí)。幾何學(xué)通過教授我們圖形的性質(zhì)和定理,提供了解決實(shí)際問題的方法和思路。在我的學(xué)習(xí)中,我發(fā)現(xiàn)了幾何學(xué)的實(shí)際應(yīng)用的重要性,也更加重視將幾何學(xué)的知識(shí)與實(shí)際問題相結(jié)合。
再次,幾何學(xué)的學(xué)習(xí)需要耐心和堅(jiān)持。幾何學(xué)的學(xué)習(xí)過程中,有時(shí)候會(huì)遇到一些復(fù)雜的定理和推論,需要進(jìn)行詳細(xì)的證明和推導(dǎo),這需要耐心和堅(jiān)持。有時(shí)候,我會(huì)面臨困難和挫折,但我相信只要我堅(jiān)持下去,解決困難的辦法和答案總會(huì)出現(xiàn)。同時(shí),幾何學(xué)的學(xué)習(xí)也需要多加練習(xí)和實(shí)踐,只有不斷地進(jìn)行練習(xí),才能熟練掌握幾何學(xué)的知識(shí)和方法。
最后,幾何學(xué)能夠培養(yǎng)思維能力和創(chuàng)造力。幾何學(xué)強(qiáng)調(diào)思辨和推理,要求學(xué)生運(yùn)用邏輯和推理能力。在幾何學(xué)的學(xué)習(xí)中,我需要不斷地思考和推理,尋找解題的方法和思路。這樣的訓(xùn)練不僅能夠培養(yǎng)我的思維能力,還能夠激發(fā)我的創(chuàng)造力。在解決幾何學(xué)問題的過程中,我常常需要發(fā)揮創(chuàng)造力,靈活運(yùn)用定理和性質(zhì),找到最佳解法。幾何學(xué)的學(xué)習(xí)過程中,我發(fā)現(xiàn)我的思維能力和創(chuàng)造力得到了很大的提升。
綜上所述,通過學(xué)習(xí)幾何學(xué),我得到了很多寶貴的心得體會(huì)。幾何學(xué)需要注重觀察和思考,注重實(shí)際應(yīng)用,需要耐心和堅(jiān)持,能夠培養(yǎng)思維能力和創(chuàng)造力。我相信,幾何學(xué)的學(xué)習(xí)不僅能夠幫助我提高數(shù)學(xué)成績,更能夠?yàn)槲医窈蟮膶W(xué)習(xí)和生活打下堅(jiān)實(shí)的基礎(chǔ)。我將繼續(xù)努力學(xué)習(xí)幾何學(xué),不斷完善自己的幾何學(xué)知識(shí),更好地運(yùn)用到實(shí)際問題中。
幾何原本心得體會(huì)篇十五
《幾何原本》作為數(shù)學(xué)的圣經(jīng),第一部系統(tǒng)的數(shù)學(xué)著作,牛頓,愛因斯坦,就是以這種形式寫的《自然哲學(xué)的數(shù)學(xué)原理》和《相對(duì)論》,斯賓諾莎寫出哲學(xué)著作《倫理學(xué)》,倫理學(xué)可以作為哲學(xué)與社會(huì)科學(xué)以及心理學(xué)的接口,都是推理性很強(qiáng)。
幾何原本總共13卷,研究前六卷就可以了,因?yàn)楹筮叺亩际菓?yīng)用前邊的理論,應(yīng)用到具體的領(lǐng)域,無理數(shù),立體幾何等領(lǐng)域,幾何原本我認(rèn)為最精髓的就是合理的假設(shè),對(duì)點(diǎn)線面的抽象,這樣才得以使得后面的定理成立,其中第五個(gè)公設(shè)后來還被推翻了,以點(diǎn)線面作為基礎(chǔ),以歐幾里得工具作為工具,進(jìn)行了各種幾何現(xiàn)象的嚴(yán)密推理,我認(rèn)為這些定理成立的條件必須是在,對(duì)幾條哲學(xué)原則默許了之后,才能成立。主要是最簡單的幾何形狀,從怎么畫出來,畫出來也是有根據(jù)的,再就是各種形狀的性質(zhì),以及各種形狀之間關(guān)系的定理,都是一步一步推理出來的。
在幾何原本后續(xù)的有阿波羅尼奧斯的《圓錐截線論》,牛頓的《自然哲學(xué)的數(shù)學(xué)原理》,算是比較系統(tǒng)的數(shù)學(xué)著作,也都是用歐幾里得工具進(jìn)行證明的,后來的微積分工具的出現(xiàn),我認(rèn)為是圓周率的求解過程,無限接近的思想,才使得微積分工具產(chǎn)生,現(xiàn)代數(shù)學(xué)看似陣容豪華,可是并沒有新的工具的出現(xiàn),只是對(duì)微積分工具在各個(gè)形狀上進(jìn)行應(yīng)用,數(shù)學(xué)主要是在空間上做文章,現(xiàn)在數(shù)學(xué)能干的活看似挺多,但是也要得益于物理學(xué)的發(fā)展,數(shù)學(xué)一方面往一般性方面發(fā)展,都忘了,細(xì)想數(shù)學(xué)思想是比較沒什么,只是腦力勞作比較大,特別是只是純數(shù)學(xué)研究,不做思想的人,很累也做不出有意義的工作。
看完二十世紀(jì)數(shù)學(xué)史,發(fā)現(xiàn)里面的人的著作,我一本也不想看,太虛。
幾何原本心得體會(huì)篇十六
讀幾何是每個(gè)學(xué)生從小到大都要學(xué)習(xí)的一門學(xué)科。對(duì)于許多人來說,學(xué)習(xí)幾何是個(gè)痛苦的過程。然而,在我的學(xué)習(xí)中,我發(fā)現(xiàn)了幾何背后的美妙之處。在這篇文章中,我將分享我在讀幾何時(shí)的心得和體驗(yàn)。
第二段:幾何的具體內(nèi)容。
幾何一般包括平面幾何和立體幾何兩個(gè)方面。平面幾何主要研究二維圖形(如三角形、矩形、正方形、圓形等),而立體幾何則主要研究三維物體(如立方體、球體、圓柱體等)。學(xué)習(xí)幾何需要一定的數(shù)學(xué)知識(shí),包括代數(shù)、三角學(xué)、向量等。
第三段:我的學(xué)習(xí)經(jīng)歷。
在我的學(xué)習(xí)中,我發(fā)現(xiàn)幾何是一門需要理解和掌握的學(xué)科。我不僅需要記憶幾何定理和公式,而且需要了解它們的意義和應(yīng)用。通過實(shí)踐和練習(xí),我逐漸掌握了如何證明幾何定理和求解幾何問題。
第四段:幾何的美妙之處。
幾何是一門非常美妙的學(xué)科。通過幾何,我們可以了解周圍世界的形狀和結(jié)構(gòu),并學(xué)習(xí)如何應(yīng)用數(shù)學(xué)知識(shí)來解決真實(shí)世界的問題。幾何也是一門非常直觀和有趣的學(xué)科,它可以啟發(fā)我們的創(chuàng)造力和想象力。
第五段:結(jié)論。
總之,學(xué)習(xí)幾何是一件非常有意義和有趣的事情。通過幾何,我們可以學(xué)習(xí)到很多有用的數(shù)學(xué)知識(shí),同時(shí)也可以培養(yǎng)我們的思維能力和想象力。希望我的經(jīng)歷可以給那些正在學(xué)習(xí)幾何的人一些啟示和幫助。
幾何原本心得體會(huì)篇十七
古希臘大數(shù)學(xué)家歐幾里德是和他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學(xué)著作,也是歐幾里德最有價(jià)值的一部著作。在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動(dòng)人民和學(xué)者們?cè)趯?shí)踐和思考中獲得的幾何知識(shí),歐幾里德把人們公認(rèn)的一些事實(shí)列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學(xué)論證方法,形成了一個(gè)嚴(yán)密的邏輯體系——幾何學(xué)。而這本書,也就成了歐式幾何的奠基之作。
兩千多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。哥白尼、伽利略、笛卡爾、牛頓等許多偉大的學(xué)者都曾學(xué)習(xí)過《幾何原本》,從中吸取了豐富的營養(yǎng),從而作出了許多偉大的成就。
從歐幾里得發(fā)表《幾何原本》到現(xiàn)在,已經(jīng)過去了兩千多年,盡管科學(xué)技術(shù)日新月異,由于歐氏幾何具有鮮明的直觀性和有著嚴(yán)密的邏輯演繹方法相結(jié)合的特點(diǎn),在長期的實(shí)踐中表明,它巳成為培養(yǎng)、提高青少年邏輯思維能力的好教材。歷史上不知有多少科學(xué)家從學(xué)習(xí)幾何中得到益處,從而作出了偉大的貢獻(xiàn)。
少年時(shí)代的牛頓在劍橋大學(xué)附近的夜店里買了一本《幾何原本》,開始他認(rèn)為這本書的內(nèi)容沒有超出常識(shí)范圍,因而并沒有認(rèn)真地去讀它,而對(duì)笛卡兒的“坐標(biāo)幾何”很感興趣而專心攻讀。后來,牛頓于1664年4月在參加特列臺(tái)獎(jiǎng)學(xué)金考試的時(shí)候遭到落選,當(dāng)時(shí)的考官巴羅博士對(duì)他說:“因?yàn)槟愕膸缀位A(chǔ)知識(shí)太貧乏,無論怎樣用功也是不行的?!?/p>
這席談話對(duì)牛頓的`震動(dòng)很大。于是,牛頓又重新把《幾何原本》從頭到尾地反復(fù)進(jìn)行了深入鉆研,為以后的科學(xué)工作打下了堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ)。
但是,在人類認(rèn)識(shí)的長河中,無論怎樣高明的前輩和名家,都不可能把問題全部解決。由于歷史條件的限制,歐幾里得在《幾何原本》中提出幾何學(xué)的“根據(jù)”問題并沒有得到徹底的解決,他的理論體系并不是完美無缺的。比如,對(duì)直線的定義實(shí)際上是用一個(gè)未知的定義來解釋另一個(gè)未知的定義,這樣的定義不可能在邏輯推理中起什么作用。又如,歐幾里得在邏輯推理中使用了“連續(xù)”的概念,但是在《幾何原本》中從未提到過這個(gè)概念。
幾何原本心得體會(huì)篇十八
早起忽然下起雨來了。
雨水下得濃重濃重的,只硬生生地沖擊著傘面,我常常感到手里的傘在微微地晃動(dòng),似乎有吹得散了架的危險(xiǎn)。我急步走著,又竭力躲開地面薄薄的積水。地面上擁著的'雨水如同一面鏡子,晃出些亮堂堂的人影來,還有我的深紅色的傘,統(tǒng)統(tǒng)映照在地上。
雨中的風(fēng)景熟悉而親切,即便是現(xiàn)在患了感冒,我卻依舊可以從空氣中敏銳地嗅到一兩絲的舊時(shí)候。那些自以為埋藏在心底極深的情愫,卻在雨水中顯露無遺。如同泛泛的塵埃,只零星的變動(dòng),便會(huì)不安地吹起所有的故事。如煙花一樣燦爛而轉(zhuǎn)瞬即逝,在巨響中綻放出最耀眼的花枝,又消融在一片黯然的藍(lán)色。
夏日的時(shí)候,放學(xué)時(shí)常常會(huì)忽然聚起一場暴雨。傾盆而下,敲打著窗鏡,而那明媚的日光也隨白云掩去,只留下反復(fù)響著的雨水。學(xué)校并不讓我們?cè)诖笥曛凶约簹w家的,于是便一個(gè)個(gè)地等待著家長。整個(gè)教學(xué)樓投入了一種急亂的不安之中,混亂的腳步聲,家長的吵嚷聲。教室里也便是炸了一樣的喧囂著。這時(shí)候,大家便是自由的了。前前后后的幾個(gè)同學(xué)聚在一起,玩些盡興的游戲,嬉笑著鬧成一片。陰郁的天氣在如此的情境里,卻也再?zèng)]有令人憂愁的魔力。我們?cè)谝黄稹按蚴帧?,而我常常是輸了被打手的那個(gè),又因?yàn)椴粔驒C(jī)敏,幾回合下來手便是通紅通紅地漲著了。或者是搖晃著我的小骰子,猜著點(diǎn)數(shù),玩些幸運(yùn)型的游戲。我總是離開的最晚的那個(gè)——因?yàn)楦改付疾辉谶@邊,只有年邁的奶奶可以接我。在大家統(tǒng)統(tǒng)離開,只留下空空的椅子的時(shí)候,我會(huì)微蹙著眉,怔怔地望著窗外。這時(shí)候,教室又沉浸在一種少有的沉靜,濃重濃重地沉寂著。我懼怕老師忽然同我說些什么,便往往做出在想事情的樣子,其實(shí),又有些什么呢,只是腦子里混沌的一片罷了。到奶奶來接我的時(shí)候,天便約莫放晴了。我只和奶奶在校園里走,聽那些零星拉長的雨聲。
也許,此時(shí)此刻雨幕中的我又會(huì)成為未來的我的過去。于是,此時(shí)此刻的風(fēng)景,又將成為那時(shí)候的故事。
幾何原本心得體會(huì)篇十九
在文藝復(fù)興以后的歐洲,代數(shù)學(xué)由于受到阿拉伯的影響而迅速發(fā)展。另一方面,17世紀(jì)以后,數(shù)學(xué)分析的發(fā)展非常顯著。因此,幾何學(xué)也擺脫了和代數(shù)學(xué)相隔離的狀態(tài)。正如在其名著《幾何學(xué)》中所說的一樣,數(shù)與圖形之間存在著密切的關(guān)系,在空間設(shè)立坐標(biāo),而且以數(shù)與數(shù)之間關(guān)系來表示圖形;反過來,可把圖形表示成為數(shù)與數(shù)之間的關(guān)系。這樣,按照坐標(biāo)把圖形改成數(shù)與數(shù)之間的關(guān)系問題而對(duì)之進(jìn)行處理,這個(gè)方法稱為解析幾何。恩格斯在其《自然辯證法》中高度評(píng)價(jià)了笛卡兒的工作,他指出:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù),有了變數(shù),運(yùn)動(dòng)進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分也就成為必要的。了……”
事實(shí)上,笛卡兒的思想為17世紀(jì)數(shù)學(xué)分析的發(fā)展提供了有力的基礎(chǔ)。到了18世紀(jì),解析幾何由于l。歐拉等人的開拓得到迅速的發(fā)展,連希臘時(shí)代的阿波羅尼奧斯(約公元前262~約前190)等人探討過的圓錐曲線論,也重新被看成為二次曲線論而加以代數(shù)地整理。另外,18世紀(jì)中發(fā)展起來的數(shù)學(xué)分析反過來又被應(yīng)用到幾何學(xué)中去,在該世紀(jì)末期,g。蒙日首創(chuàng)了數(shù)學(xué)分析對(duì)于幾何的應(yīng)用,而成為微分幾何的先驅(qū)者。如上所述,用解析幾何的`方法可以討論許多幾何問題。但是不能說,這對(duì)于所有問題都是最適用的。同解析幾何方法相對(duì)立的,有綜合幾何或純粹幾何方法,它是不用坐標(biāo)而直接考察圖形的方法,數(shù)學(xué)家歐幾里得幾何本來就是如此。射影幾何是在這思想方法指導(dǎo)下的產(chǎn)物。
早在文藝復(fù)興時(shí)期的意大利盛行而且發(fā)展了造型美術(shù),與它隨伴而來的有所謂透視圖法的研究,當(dāng)時(shí)有過許多人包括達(dá)·芬奇在內(nèi)把這個(gè)透視圖法作為實(shí)用幾何進(jìn)行了研究。從17世紀(jì)起,g。德扎格、b。帕斯卡把這個(gè)透視圖法加以推廣和發(fā)展,從而奠定了射影幾何。分別以他們命名的兩個(gè)定理,成了射影幾何的基礎(chǔ)。其一是德扎格定理:如果平面上兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)的連線相會(huì)于一點(diǎn),那么它們的對(duì)應(yīng)邊的交點(diǎn)在一直線上;而且反過來也成立。其二是帕斯卡定理:如果一個(gè)六角形的頂點(diǎn)在同一圓錐曲線上,那么它的三對(duì)對(duì)邊的交點(diǎn)在同一直線上;而且反過來也成立。18世紀(jì)以后,j?!獀。彭賽列、z。n。m。嘉諾、j。施泰納等完成了這門幾何學(xué)。
幾何原本心得體會(huì)篇二十
《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,大約成書于公元前300年左右,是一部劃時(shí)代的著作,是最早用公理法建立起演繹數(shù)學(xué)體系的典范。它從少數(shù)幾個(gè)原始假定出發(fā),通過嚴(yán)密的邏輯推理,得到一系列的命題,從而保證了結(jié)論的準(zhǔn)確可靠?!稁缀卧尽返脑?3卷,共包含有23個(gè)定義、5個(gè)公設(shè)、5個(gè)公理、286個(gè)命題。是當(dāng)時(shí)整個(gè)希臘數(shù)學(xué)成果、方法、思想和精神的結(jié)晶,其內(nèi)容和形式對(duì)幾何學(xué)本身和數(shù)學(xué)邏輯的發(fā)展有著巨大的影響。自它問世之日起,在長達(dá)二千多年的時(shí)間里一直盛行不衰。它歷經(jīng)多次翻譯和修訂,自1482年第一個(gè)印刷本出版后,至今已有一千多種不同的版本。除了《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛,能夠與《幾何原本》相比。但《幾何原本》超越民族、種族、宗教信仰、文化意識(shí)方面的影響,卻是《圣經(jīng)》所無法比擬的。
《幾何原本》的希臘原始抄本已經(jīng)流失了,它的所有現(xiàn)代版本都是以希臘評(píng)注家泰奧恩(theon,約比歐幾里得晚七百年)編寫的修訂本為依據(jù)的。
《幾何原本》的泰奧恩修訂本分13卷,總共有465個(gè)命題,其內(nèi)容是闡述平面幾何、立體幾何及算術(shù)理論的系統(tǒng)化知識(shí)。第一卷首先給出了一些必要的基本定義、解釋、公設(shè)和公理,還包括一些關(guān)于全等形、平行線和直線形的熟知的定理。該卷的最后兩個(gè)命題是畢達(dá)哥拉斯定理及其逆定理。這里我們想到了關(guān)于英國哲學(xué)家t.霍布斯的一個(gè)小故事:有一天,霍布斯在偶然翻閱歐幾里得的《幾何原本》,看到畢達(dá)哥拉斯定理,感到十分驚訝,他說:“上帝??!這是不可能的?!彼珊笙蚯白屑?xì)閱讀第一章的每個(gè)命題的證明,直到公理和公設(shè),他終于完全信服了。第二卷篇幅不大,主要討論畢達(dá)哥拉斯學(xué)派的幾何代數(shù)學(xué)。
第三卷包括圓、弦、割線、切線以及圓心角和圓周角的一些熟知的定理。這些定理大多都能在現(xiàn)在的中學(xué)數(shù)學(xué)課本中找到。第四卷則討論了給定圓的某些內(nèi)接和外切正多邊形的尺規(guī)作圖問題。第五卷對(duì)歐多克斯的比例理論作了精彩的解釋,被認(rèn)為是最重要的數(shù)學(xué)杰作之一。據(jù)說,捷克斯洛伐克的一位并不出名的數(shù)學(xué)家和牧師波爾查諾(bolzano,1781-1848),在布拉格度假時(shí),恰好生病,為了分散注意力,他拿起《幾何原本》閱讀了第五卷的內(nèi)容。他說,這種高明的方法使他興奮無比,以致于從病痛中完全解脫出來。此后,每當(dāng)他朋友生病時(shí),他總是把這作為一劑靈丹妙藥問病人推薦。第七、八、九卷討論的是初等數(shù)論,給出了求兩個(gè)或多個(gè)整數(shù)的最大公因子的“歐幾里得算法”,討論了比例、幾何級(jí)數(shù),還給出了許多關(guān)于數(shù)論的重要定理。第十卷討論無理量,即不可公度的線段,是很難讀懂的一卷。最后三卷,即第十一、十二和十三卷,論述立體幾何。目前中學(xué)幾何課本中的內(nèi)容,絕大多數(shù)都可以在《幾何原本》中找到。
《幾何原本》按照公理化結(jié)構(gòu),運(yùn)用了亞里士多德的邏輯方法,建立了第一個(gè)完整的關(guān)于幾何學(xué)的演繹知識(shí)體系。所謂公理化結(jié)構(gòu)就是:選取少量的原始概念和不需證明的命題,作為定義、公設(shè)和公理,使它們成為整個(gè)體系的出發(fā)點(diǎn)和邏輯依據(jù),然后運(yùn)用邏輯推理證明其他命題?!稁缀卧尽烦蔀榱藘汕Ф嗄陙磉\(yùn)用公理化方法的一個(gè)絕好典范。
誠然,正如一些現(xiàn)代數(shù)學(xué)家所指出的那樣,《幾何原本》存在著一些結(jié)構(gòu)上的缺陷,但這絲毫無損于這部著作的崇高價(jià)值。它的影響之深遠(yuǎn).使得“歐幾里得”與“幾何學(xué)”幾乎成了同義語。它集中體現(xiàn)了希臘數(shù)學(xué)所奠定的數(shù)學(xué)思想、數(shù)學(xué)精神,是人類文化遺產(chǎn)中的一塊瑰寶。
【本文地址:http://aiweibaby.com/zuowen/13705933.html】